Câu hỏi:

13/07/2024 6,540

Cho hình bình hành ABCDAD = 2AB. Gọi M là trung điểm của AD. Kẻ CE vuông góc với AB tại E, MF vuông góc với CE tại F, MF cắt BC tại N. Chứng minh rằng:

a) Tứ giác MDCN là hình thoi;

b) Tam giác EMC là tam giác cân;

c) BAD^=2AEM^.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD có AD = 2AB. Gọi M là trung điểm của AD. Kẻ CE vuông góc với AB tại E, MF vuông góc với CE tại F, MF cắt BC tại N. Chứng minh rằng: a) Tứ giác MDCN là hình thoi; b) Tam giác EMC là tam giác cân; c)  . (ảnh 1)

a) Ta có: MF CE, AB CE, suy ra MN // AB // CD.

Xét tứ giác MDCN ta có: MD // CN (do AD // BC; M AD, N BC) và MN // CD (chứng minh trên).

Do đó tứ giác MDCN là hình bình hành.

Mặt khác M là trung điểm của AD nên MD=12AD

Lại có AD = 2AB mà AB = CD (do ABCD là hình bình hành) nên CD=AB=12AD

Do đó MD = CD.

Suy ra hình bình hành MDCN là hình thoi.

b) Xét tứ giác ADCE ta có AE // CD (theo câu a).

Do đó, tứ giác ADCE là hình thang với hai đáy AECD.

Xét hình thang ADCE có:

M là trung điểm AD (giả thiết);

AE // MF // CD (theo câu a).

Theo chứng minh ở Bài 5, trang 63, SBT Toán 8 Tập Một, ta có: F là trung điểm của CE.

Xét ∆EMCMF là đường trung tuyến ứng với cạnh CEMF CE (giả thiết).

Do đó ∆EMC cân tại M.

c) Tứ giác MDCN là hình thoi nên NMD^=2NMC^ (tính chất đường chéo của hình thoi).

∆EMC cân tại M nên EMF^=CMF^

Ta có BAD^=NMD^=2NMC^=2EMF^. (1)

Lại có AEM^=EMF^ (hai góc so le trong). (2)

Từ (1) và (2) suy ra BAD^=2AEM^.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD. Gọi H và K lần lượt là chân đường cao hạ từ A và C đến BD. a) Chứng minh rằng tứ giác AHCK là hình bình hành. b) Gọi M là giao điểm của AK và BC, N là giao điểm của CH và AD. Chứng minh AN = CM. c) Gọi O là trung điểm của HK. Chứng minh M, O, N thẳng hàng. (ảnh 1)

a) Do ABCD là hình bình hành nên AB // CD

Suy ra ABD^=CDB^ (hai góc so le trong) hay ABH^=CDK^.

Xét ∆AHB vuông tại H và ∆CKD vuông tại K, ta có:

AB = CD (do ABCD là hình bình hành); ABH^=CDK^ (chứng minh trên).

Suy ra ∆AHB  = CKD (cạnh huyền – góc nhọn)

Do đó AH = CK (hai cạnh tương ứng)

Ta có: AH BD, CK BD suy ra AH // CK.

Tứ giác AHCK có: AH // CK, AH = CK nên là hình bình hành.

b) Vì AHCK là hình bình hành nên AK // CH, hay AM // CN. (1)

Hơn nữa, ABCD là hình bình hành và N AD, M BC nên AN // CM. (2)

Từ (1) và (2) suy ra ANCM là hình bình hành.

Vậy AN = CM.

c) Tứ giác AHCK là hình bình hành có hai đường chéo AC, HK cắt nhau tại trung điểm

O của HK nên O cũng là trung điểm của AC.

Tứ giác ANCM là hình bình hành có hai đường chéo AC, NM cắt nhau tại trung điểm

O của AC nên O cũng là trung điểm của MN.

Vậy M, O, N thẳng hàng.

Lời giải

Cho hình bình hành ABCD. Trên các cạnh AB và CD, lần lượt lấy các điểm M và N sao cho AM = CN. Gọi O là giao điểm của MN và AC. Chứng minh rằng ba điểm B, O, D thẳng hàng. (ảnh 1)

Do ABCD là hình bình hành nên AB // CD, suy ra AMO^=CNO^;MAO^=NCO^ (các cặp góc so le trong).

Xét ∆AOM và ∆CON ta có:

AMO^=CNO^ (chứng minh trên);

AM = CN (giả thiết);

MAO^=NCO^ (chứng minh trên)

Do đó ∆AOM = ∆CON  (g.c.g).

Suy ra OA = OC (hai cạnh tương ứng)

Xét hình bình hành ABCDO là trung điểm của đường chéo AC nên O cũng là trung điểm của đường chéo BD.

Do đó ba điểm B, O, D thẳng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay