Giải SGK Toán 8 CTST Bài 4. Phân tích đa thức thành nhân tử có đáp án
58 người thi tuần này 4.6 2 K lượt thi 38 câu hỏi
🔥 Đề thi HOT:
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Phát biểu của bạn nữ: “993 – 99 chia hết cho cả ba số 98, 99 và 100.”
Phát biểu của bạn nam: “Đúng rồi. Vì n3 – n chia hết cho n, n – 1 và n + 1 mà. (n là số tự nhiên, n > 1)”
Phát biểu của hai bạn có đúng không? Vì sao?
Phát biểu của bạn nữ: “993 – 99 chia hết cho cả ba số 98, 99 và 100.”
Phát biểu của bạn nam: “Đúng rồi. Vì n3 – n chia hết cho n, n – 1 và n + 1 mà. (n là số tự nhiên, n > 1)”
Phát biểu của hai bạn có đúng không? Vì sao?
Lời giải
Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:
Ta có: 993 – 99 = 99.(992 – 1)
= 99.(992 – 12)
= 99.(99 – 1).(99 + 1)
= 99.98.100
Do đó 993 – 99 chia hết cho cả ba số 98, 99 và 100.
Ta có: n3 – n = n(n2 – 1)
= n.(n – 1).(n + 1)
Do đó n3 – n chia hết cho n, n – 1 và n + 1.
Vậy phát biểu của cả hai bạn đều đúng.
Câu 2
Tính diện tích của nền nhà có bản vẽ sơ lược như Hình 1 theo những cách khác nhau, biết a = 5; b = 3,5 (các kích thước tính theo mét).
Tính theo cách nào nhanh hơn?
Tính diện tích của nền nhà có bản vẽ sơ lược như Hình 1 theo những cách khác nhau, biết a = 5; b = 3,5 (các kích thước tính theo mét).
Tính theo cách nào nhanh hơn?

Lời giải
Cách 1: Tính tổng diện tích các hình.
Diện tích hình chữ nhật có chiều dài a (m) và chiều rộng b – 1 (m) là: a(b – 1) (m2).
Diện tích hình chữ nhật có chiều dài a (m) và chiều rộng b (m) là: ab (m2).
Diện tích hình chữ nhật có chiều dài a (m) và chiều rộng 4,5 (m) là: 4,5a (m2).
Diện tích của nền nhà là: S = a(b – 1) + ab + 4,5a (m2).
Với a = 5 và b = 3,5 ta có:
S = 5.(3,5 – 1) + 5.3,5 + 4,5.5
= 5 . (3,5 – 1 + 3,5 + 4,5)
= 5 . 10,5
= 52,5 (m2).
Cách 2: Tính chiều dài của nền nhà rồi tính diện tích của nền nhà.
Chiều dài của nền nhà là:
b – 1 + b + 4,5 = 2b + 3,5 (m).
Diện tích của nền nhà là: S = a.(2b + 3,5) (m2).
Với a = 5 và b = 3,5 ta có:
S = 5.(2.3,5 + 3,5) = 5 . 10,5 = 52,5 (m2).
Chú ý: Ngoài 2 cách trên ta có thể tính diện tích của nền nhà theo cách khác.
Trong tất cả các cách thì ta thấy Cách 2 là nhanh nhất.
Lời giải
a) P = 6x – 2x3
= 2x.3 – 2x.x2
= 2x(3 – x2).
Lời giải
b) Q = 5x3 – 15x2y
= 5x2.x – 5x2.3y
= 5x2(x – 3y).
Lời giải
c) R = 3x3y3 – 6xy3z + xy
= xy.3x2y2 – xy.6y2z + xy.1
= xy(3x2y2 – 6y2z + 1).
Câu 6
Tìm biểu thức thích hợp thay vào mỗi chỗ , từ đó hoàn thành biến đổi sau vào vở để phân tích đa thức sau thành nhân tử:
a) ;
Tìm biểu thức thích hợp thay vào mỗi chỗ , từ đó hoàn thành biến đổi sau vào vở để phân tích đa thức sau thành nhân tử:
a) ;
Lời giải
a,
Câu 7
Tìm biểu thức thích hợp thay vào mỗi chỗ , từ đó hoàn thành biến đổi sau vào vở để phân tích đa thức sau thành nhân tử:
b)
Tìm biểu thức thích hợp thay vào mỗi chỗ , từ đó hoàn thành biến đổi sau vào vở để phân tích đa thức sau thành nhân tử:
b)
Lời giải
b,
Lời giải
a) 9x2 – 16 = (3x)2 – 42
= (3x – 4)(3x + 4).
Lời giải
b) 4x2 – 12xy + 9y2
= (2x)2 – 2.2x.3y + (3y)2
= (2x – 3y)2.
Lời giải
c) t3 – 8 = t3 – 23
= (t – 2)(t2 + t.2 + 22)
= (t – 2)(t2 – 2t + 4).
Lời giải
d) 2ax3y3 + 2a
= 2a.(x3y3 + 1)
= 2a.[(xy)3 + 13]
= 2a(xy + 1)[(xy)2 – xy.1 + 12]
= 2a(xy + 1)(x2y2 – xy + 1).
Câu 12
Tìm một hình hộp chữ nhật có thể tích 2x3 – 18x (với x > 3) mà độ dài các cạnh đều là biểu thức chứa x.
Tìm một hình hộp chữ nhật có thể tích 2x3 – 18x (với x > 3) mà độ dài các cạnh đều là biểu thức chứa x.
Lời giải
Ta có: 2x3 – 18x = 2x(x2 – 9)
= 2x(x2 – 32)
= 2x(x – 3)(x + 3)
Vậy hình hộp chữ nhật có thể tích 2x3 – 18x (với x > 3) sẽ có độ dài ba kích thước là 2x, x – 3 và x + 3.
Lời giải
Ta có: 993 – 99 = 99.(992 – 1)
= 99.(992 – 12)
= 99.(99 – 1).(99 + 1)
= 99.98.100
Do đó 993 – 99 chia hết cho cả ba số 98, 99 và 100.
Ta có: n3 – n = n(n2 – 1)
= n.(n – 1).(n + 1)
Do đó n3 – n chia hết cho n, n – 1 và n + 1.
Vậy phát biểu của cả hai bạn đều đúng.
Câu 14
Hãy hoàn thành biến đổi sau vào vở để phân tích đa thức thành nhân tử:
a2 + ab + 2a + 2b = (a2 + ab) + (2a + 2b) = …
Em có thể biến đổi theo cách khác để phân tích đa thức trên thành nhân tử không?
Hãy hoàn thành biến đổi sau vào vở để phân tích đa thức thành nhân tử:
a2 + ab + 2a + 2b = (a2 + ab) + (2a + 2b) = …
Em có thể biến đổi theo cách khác để phân tích đa thức trên thành nhân tử không?
Lời giải
a2 + ab + 2a + 2b
= (a2 + ab) + (2a + 2b)
= a(a + b) + 2(a + b)
= (a + b)(a + 2).
Ta có thể biến đổi theo cách khác như sau:
a2 + ab + 2a + 2b
= (a2 + 2a) + (ab + 2b)
= a(a + 2) + b(a + 2)
= (a + 2)(a + b).
Lời giải
a) a3 – a2b + a – b
= (a3 – a2b) + (a – b)
= a2(a – b) + (a – b)
= (a – b)(a2 + 1).
Lời giải
b) x2 – y2 + 2y – 1
= x2 – (y2 – 2y + 1)
= x2 – (y – 1)2
= (x + y – 1).[x – (y – 1)]
= (x + y – 1)(x – y + 1).
Câu 17
Có thể ghép bốn tấm pin mặt trời với kích thước như Hình 2 thành một hình chữ nhật không? Nếu có, tính độ dài các cạnh và diện tích hình chữ nhật đó. Biết a = 0,8; b = 2 (các kích thước tính theo mét).
Có thể ghép bốn tấm pin mặt trời với kích thước như Hình 2 thành một hình chữ nhật không? Nếu có, tính độ dài các cạnh và diện tích hình chữ nhật đó. Biết a = 0,8; b = 2 (các kích thước tính theo mét).

Lời giải
Diện tích tấm pin hình vuông có cạnh bằng a là: a2 (m2).
Diện tích tấm pin hình chữ nhật có chiều dài bằng 1 và chiều rộng bằng a là: a.1 = a (m2).
Diện tích tấm pin hình chữ nhật có chiều dài bằng b và chiều rộng bằng a là: ab (m2).
Diện tích tấm pin hình chữ nhật có chiều dài bằng b và chiều rộng bằng 1 là: b.1 = b (m2).
Tổng diện tích bốn tấm pin mặt trời là:
S = a2 + a + ab + b = (a2 + a) + (ab + b)
= a(a + 1) + b(a + 1)
= (a + 1)(a + b) (m2).
Vậy có thể ghép bốn tấm pin mặt trời với kích thước như Hình 2 thành một hình chữ nhật có chiều rộng là a + 1 (m) và chiều dài là a + b (m).
Với a = 0,8 (m) và b = 2 (m) ta có:
• Chiều rộng hình chữ nhật đó là 0,8 + 1 = 1,8 (m).
• Chiều dài hình chữ nhật đó là 0,8 + 2 = 2,8 (m).
• Diện tích hình chữ nhật đó là: 1,8 . 2,8 = 5,04 (m2).
Lời giải
a) x3 + 4x = x.x2 + x.4 = x(x2 + 4).
Lời giải
b) 6ab – 9ab2 = 3ab.2 – 3ab.3b = 3ab(2 – 3b).
Lời giải
c) 2a(x – 1) + 3b(1 – x)
= 2a(x – 1) + 3b[– (x – 1)]
= 2a(x – 1) – 3b(x – 1)
= (x – 1)(2a – 3b).
Lời giải
d) (x – y)2 – x(y – x)
= (x – y)2 + x(x – y)
= (x – y)(x – y + x)
= (x – y)(2x – y).
Lời giải
a) 4x2 – 1 = (2x)2 – 12 = (2x + 1)(2x –1).
Lời giải
b) (x + 2)2 – 9 = (x + 2)2 – 32
= (x + 2 + 3)(x + 2 – 3)
= (x + 5)(x – 1).
Lời giải
c) (a + b)2 – (a – 2b)2
= [(a + b) + (a – 2b)] . [(a + b) – (a – 2b)]
= [a + b + a – 2b] . [a + b – a + 2b]
= (2a – b).3b.
Lời giải
a) 4a2 + 4a + 1
= (2a)2 + 2.2a.1 + 12
= (2a + 1)2.
Lời giải
b) –3x2 + 6xy – 3y2
= –3(x2 – 2xy + y2)
= –3(x – y)2.
Lời giải
c) (x + y)2 – 2(x + y)z + z2
= [(x + y) – z]2
= (x + y – z)2.
Lời giải
a) 8x3 – 1
= (2x)3 – 13
= (2x – 1)[(2x)2 + 2x.1 + 12]
= (2x – 1)(4x2 + 2x + 1).
Lời giải
b) x3 + 27y3
= x3 + (3y)3
= (x + 3y)[x2 – x.3y + (3y)2]
= (x + 3y)(x2 – 3xy + 9y2).
Lời giải
c) x3 – y6
= x3 – (y2)3
= (x – y2)[x2 + x.y2 + (y2)2]
= (x – y2)(x2 + xy2 + y4).
Lời giải
a) 4x3 – 16x
= 4x(x2 – 4)
= 4x(x2 – 22)
= 4x(x + 2)(x – 2).
Lời giải
b) x4 – y4
= (x2)2 – (y2)2
= (x2 + y2)(x2 – y2)
= (x2 + y2)(x + y)(x – y).
Lời giải
c) xy2 + x2y + y3
= y(xy + x2 + y2)
Lời giải
d) x2 + 2x – y2 + 1
= (x2 + 2x + 1) – y2
= (x + 1)2 – y2
= (x + 1 + y)(x + 1 – y).
Lời giải
a) x2 – xy + x – y
= (x2 – xy) + (x – y)
= x(x – y) + (x – y)
= (x – y)(x + 1).
Lời giải
b) x2 + 2xy – 4x – 8y
= (x2 + 2xy) – (4x + 8y)
= x(x + 2y) – 4(x + 2y)
= (x + 2y)(x – 4).
Lời giải
c) x3 – x2 – x + 1
= (x3 – x2) – (x – 1)
= x2(x – 1) – (x – 1)
= (x – 1)(x2 – 1)
= (x – 1)(x + 1)(x – 1)
= (x – 1)2(x + 1).
Lời giải
Giả sử hình vuông có độ dài cạnh bằng a (a > 0), khi đó diện tích của hình vuông là a2.
Tức là 49y2 + 28y + 4 = a2.
Ta phân tích đa thức 49y2 + 28y + 4 thành nhân tử có dạng a2.
49y2 + 28y + 4
= (7y)2 + 2.7y.2 + 22
= (7y + 2)2
Vậy độ dài cạnh của hình vuông có diện tích bằng 49y2 + 28y + 4 là 7y + 2.
403 Đánh giá
50%
40%
0%
0%
0%