Giải SGK Toán 8 CTST Bài 1: Khái niệm hàm số có đáp án

49 người thi tuần này 4.6 520 lượt thi 16 câu hỏi

🔥 Đề thi HOT:

1747 người thi tuần này

Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)

13.2 K lượt thi 19 câu hỏi
950 người thi tuần này

15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án

4.8 K lượt thi 15 câu hỏi
766 người thi tuần này

Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)

3.2 K lượt thi 18 câu hỏi
583 người thi tuần này

Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án

4.8 K lượt thi 13 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Số liệu về lượng mưa M (mm) trong 7 tháng mùa mưa của thành phố Đà Lạt năm 2020 được biểu diện theo số n chỉ tháng trong biểu đồ dưới đây.

Số liệu về lượng mưa M (mm) trong 7 tháng mùa mưa của thành phố Đà Lạt năm 2020 được biểu diện theo số n chỉ tháng trong biểu đồ dưới đây. (ảnh 1)

(Nguồn: Tổng cục Thống kê)

Quan sát biểu đồ và cho biết số lượng mưa ở mỗi tháng là bao nhiêu.

Lời giải

Lượng mưa tháng 5 là 134,5 mm;

Lượng mưa tháng 6 là 343,6 mm;

Lượng mưa tháng 7 là 319,9 mm;

Lượng mưa tháng 8 là 276,6 mm;

Lượng mưa tháng 9 là 377,8 mm;

Lượng mưa tháng 10 là 288,7 mm;

Lượng mưa tháng 11 là 155,4 mm.

Câu 2

Nhiệt độ cơ thể d (°C) của bệnh nhân theo thời gian h (giờ) trong ngay được ghi trong bảng sau:

h (giờ)

7

8

9

10

11

12

13

14

15

d (°C)

36

37

36

37

38

37

38

39

39

Ứng với mỗi giờ em đọc được bao nhiêu số chỉ nhiệt độ?

Lời giải

Ứng với mỗi giờ chỉ đọc được một số chỉ nhiệt độ.

Ứng với 7h thì nhiệt độ là (36°C)

Ứng với 8h thì nhiệt độ là (37°C)

Ứng với 9h thì nhiệt độ là (36°C)

Ứng với 10h thì nhiệt độ là (37°C)

Ứng với 11h thì nhiệt độ là (38°C)

Ứng với 12h thì nhiệt độ là (37°C)

Ứng với 13h thì nhiệt độ là (38°C)

Ứng với 14h thì nhiệt độ là (39°C)

Ứng với 15h thì nhiệt độ là (39°C)

Câu 3

Thời gian t (giờ) để một vật chuyển động đều đi hết quang đường 180 km tỉ lệ nghịch với vận tốc v (km/h) của nó theo công thức: t=180v

Tính và lập bảng các giá trị tương ứng của t khi v lần lượt bằng 10; 20; 30; 60; 180.

Ứng với mỗi giá trị của đại lượng v em tính được bao nhiêu giá trị của đại lượng t?

Lời giải

Với v = 10 t=18010=18

Với v = 20 t=18020=9

Với v = 30 t=18030=6

Với v = 60 t=18060=3

Với v = 180 t=180180=1

Ta có bảng:

 

v

10

20

30

60

180

t

18

9

6

3

1

Câu 4

Mô tả các đại lượng là hàm số và biến số trong các mô hình sau:

a) Biểu đồ cột chỉ doanh thu y (triệu đồng) của một của hàng trong tháng x.

Mô tả các đại lượng là hàm số và biến số trong các mô hình sau: a) Biểu đồ cột chỉ doanh thu y (triệu đồng) của một của hàng trong tháng x. (ảnh 1)

b) Quãng đường s (km) đi được trong thời gian t (giờ) của một chiếc xe chạy với tốc độ không đổi bằng 40 km/h.

c) Số tiền y (đồng) người mua phải trả cho x quyển vở có giá 10 000 đồng/quyển.

Lời giải

a) Đại lượng là hàm số là doanh thu y (triệu đồng) của một cửa hàng và biến số là tháng x.

b) Đại lượng là hàm số là quãng đường s (km) đi được và biến số là thời gian t (giờ).

c) Đại lượng là hàm số là số tiền y (đồng) người mua phải trả và biến số là số x quyển vở.

Câu 5

Khi đo nhiệt độ, ta có công thức đổi từ đơn vị độ C (Celsius) sang đơn vị độ F (Fahrenheit) như sau: F = 1,8C + 32. Theo em, F có phải là một hàm số theo biến số C hay không? Giải thích.

Lời giải

F là một hàm số theo biến C vì với mỗi giá trị của C chỉ cho ta duy nhất một giá trị của F.

Câu 6

Cho biết đại lượng y được tính theo đại lượng x như sau: y = 2x + 3.

x

1

2

3

4

y = 2x + 3

5

7

9

a) Tính y khi x = 4.

b) Cho x một giá trị tùy ý, tính giá trị tương ứng của y.

Lời giải

a) Với x = 4 ta có: y = 2.4 + 3 = 11

b) Với x = 10 ta có: y = 10.4 + 3 = 43.

Ta có bảng sau:

x

1

2

3

4

10

y = 2x + 3

5

7

9

11

43

Câu 7

Các giá trị tương ứng của hai đại lượng x và y được cho trong bảng sau:

x

−3

−2

−1

1

2

3

y

−6

−4

−2

2

4

6

Đại lượng y có phải là hàm số của đại lượng x không?

Lời giải

Với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y nên đại lượng y là hàm số của đại lượng x.

Câu 8

Cho hàm số y = f(x) = x2.

- Tính f(2); f(−3).

- Lập bảng giá trị của hàm số với x lần lượt bằng −3; −2; −1; 0; 1; 2; 3.

Lời giải

f(2) = 22 = 4; f(−3) = (−3)2 = 9.

Ta có f(0) = 02 = 0; f(−1) = (−1)2 = 1;

f(2) = 22 = 4; f(3) = 32 = 9.

Từ đó ta có bảng:

x

−3

−2

−1

0

1

2

3

y = x2

9

4

1

0

1

4

9

Câu 9

Gọi C = f(d) là hàm số mô tả mối quan hệ giữa chu vi C và đường kính d của một đường tròn. Tìm công thức f(d) và lập bảng giá trị của hàm số ứng với d lần lượt bằng 1; 2; 3; 4 (theo đơn vị cm).

Lời giải

Ta có: C = πd trong đó, C là chu vi đường tròn; d là đường kính và p là số pi.

Do đó, f(d) = π.d

Với d = 1 ⇒ f(1) = π.1 = π

d = 2 ⇒ f(2) = π.2 = 2π

d = 3 ⇒ f(3) = π.3 = 3π

d = 4 ⇒ f(4) = π.4 = 4π

Ta thu được bảng sau:

d

1

2

3

4

f(d)

p

2π

3π

4π

Câu 10

Các giá trị tương ứng của hai đại lượng x và y được cho trong các bảng sau. Trong mỗi trường hợp, hãy cho biết đại lượng y có phải là hàm số của đại lượng x không.

Giải thích.

 

x

0

1

2

3

4

5

6

7

y

1

2

3

4

5

6

7

8

Lời giải

Dựa vào bảng, ta thấy với một giá trị của x ta chỉ nhận được một giá trị của y tương ứng, do đó đại lượng y là hàm số của đại lượng x.

Câu 11

Các giá trị tương ứng của hai đại lượng x và y được cho trong các bảng sau. Trong mỗi trường hợp, hãy cho biết đại lượng y có phải là hàm số của đại lượng x không.

Giải thích.

Các giá trị tương ứng của hai đại lượng x và y được cho trong các bảng sau. Trong mỗi trường hợp, hãy cho biết đại lượng y có phải là hàm số của đại lượng x không. Giải thích. (ảnh 1)

Lời giải

Dựa vào bảng, ta thấy tồn tại một giá trị của x ta có thể nhận được hai giá trị của y tương ứng, do đó đại lượng y không là hàm số của đại lượng x.

Ví dụ: Khi x = 2 thì y = 12 hoặc y = 13

Câu 12

Cho hàm số y = f(x) = 3x. Tính f(1); f(−2); f13

Lời giải

Ta có:

f(1) = 3.1 = 3;

f(−2) = 3.(−2) = −6;

• f13=3.13=1

Câu 13

Cho hàm số y = f(x) = 3x.

Lập bảng các giá trị tương ứng của y khi x lần lượt nhận các giá trị: −3; −2; −1; 0; 1; 2; 3.

Lời giải

Ta có f(−3) = 3.(−3) = −9; f(−1) = 3.(−1) = −3;

f(0) = 3.0 = 0; f(2) = 3.2 = 6; f(3) = 3.3 = 9.

Từ đó ta có bảng sau:

x

−3

−2

−1

0

1

2

3

y = 3x

−9

−6

−3

0

3

6

9

Câu 14

Cho hàm số y = f(x) = x2 + 4. Tính f(−3); f(−2); f(−1); f(0); f(1).

Lời giải

f(−3) = (−3)2 + 4 = 9 + 4 = 13;

f(−2) = (−2)2 + 4 = 4 + 4 = 8;

f(−1) = (−1)2 + 4 = 5;

f(0) = 0 + 4 = 4;

f(1) = 1 + 4 = 5.

Vậy f(−3) = 13; f(−2) = 8; f(−1) = 5; f(0) = 4; f(1) = 5.

Câu 15

Khối lượn m (g) của một thanh sắt có khối lượng riêng là 7,8 kg/dm3 tỉ lệ thuận với thể tích V (cm3) theo công thức m = 7,8V. Đại lượng m có phải là hàm số của đại lượng V không? Nếu có, tính m(10); m(20); m(30); m(40); m(50).

Lời giải

Đại lượng m là hàm số của đại lượng V vì với mỗi một giá trị của V ta luôn chỉ xác định được một giá trị của m.

Ta có: m = 7,8V

m(10) = 7,8.10 = 78;

m(20) = 7,8.20 = 156;

m(40) = 7,8.40 = 312;

m(50) = 7,8.50 = 390.

Câu 16

Thời gian t(giờ) của một vật chuyển động đều trên quãng đương 20km tỉ lệ nghịch với tốc độ v (km/h) của nó theo công thức t=20v . Tính và lập bảng các giá trị tương ứng của t khi v lần lượt nhận các giá trị 10; 20; 40; 80.

Lời giải

Với v = 10 ta có t=2010=2

Với v = 20 ta có t=2020=1;

Với v = 40 ta có t=2040=0,5;

Với v = 80 ta có t=2080=0,25.

Khi đó, ta có bảng sau:

v (km/h)

10

20

40

80

t (giờ)

2

1

0,5

0,25

4.6

104 Đánh giá

50%

40%

0%

0%

0%