Giải SBT Toán 8 CTST Tính chất đường phân giác của tam giác có đáp án
25 người thi tuần này 4.6 354 lượt thi 8 câu hỏi
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
Dạng 1. Vận dụng tính chất của hình bình hành để chứng minh các tính chất hình học có đáp án
10 câu Trắc nghiệm Toán 8 Bài 3: Tính chất đường phân giác của tam giác có đáp án (Thông hiểu)
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

Ta có AD là phân giác của \[\widehat {BAC}\] trong ∆ABC, suy ra \[\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}}\].
Suy ra \[\frac{{15}}{{20}} = \frac{{AB}}{{AC}}\] hay \[\frac{{AB}}{{15}} = \frac{{AC}}{{20}}\].
Suy ra \[\frac{{A{B^2}}}{{225}} = \frac{{A{C^2}}}{{400}} = \frac{{A{B^2} + A{C^2}}}{{225 + 400}} = \frac{{B{C^2}}}{{625}}\] (áp dụng định lí Pythagore trong ∆ABC vuông).
Ta có BC = BD + DC = 15 + 20 = 35 (cm).
Nên \[\frac{{A{B^2}}}{{225}} = \frac{{A{C^2}}}{{400}} = \frac{{{{35}^2}}}{{625}} = \frac{{49}}{{25}}\].
Suy ra AB2 \[ = \frac{{49.225}}{{25}}\] = 441 và AC2\[ = \frac{{49.400}}{{25}}\] = 784.
Vậy AB = 21 cm; AC = 28 cm.
Lời giải

• Vì AD là phân giác của \[\widehat {BAC}\] trong ∆ABC nên ta có
\[\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}}\]\[ = \frac{6}{9} = \frac{2}{3}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{DB}}{2} = \frac{{DC}}{3} = \frac{{DB + DC}}{{2 + 3}} = \frac{{BC}}{5} = \frac{{10}}{5} = 2\].
Suy ra \[\frac{{DB}}{2} = 2\]và \[\frac{{DC}}{3} = 2\].
Do đó DB = 4 cm; DC = 6 cm.
• Vì AE là phân giác ngoài tại đỉnh A của ∆ABC nên ta có
\[\frac{{EB}}{{EC}} = \frac{{AB}}{{AC}} = \frac{6}{9} = \frac{2}{3}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{EC}}{3} = \frac{{EB}}{2} = \frac{{EC - EB}}{{3 - 2}} = \frac{{BC}}{1} = 10\].
Do đó \[\frac{{EB}}{2} = 10\] suy ra EB = 20 cm.
Vậy DB = 4 cm, DC = 6 cm, EB = 20 cm.
Lời giải

• Vì BI là phân giác của \[\widehat {ABC}\] trong ∆ABC nên ta có \[\frac{{IA}}{{ID}} = \frac{{AB}}{{BD}}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{IA}}{{AB}} = \frac{{ID}}{{BD}} = \frac{{IA + ID}}{{AB + BD}} = \frac{{AD}}{{AB + BD}}\] suy ra \[\frac{{ID}}{{AD}} = \frac{{BD}}{{AB + BD}}\] (1)
• Vì CI là phân giác của \[\widehat {ACB}\] trong ∆ABC nên ta có \[\frac{{IA}}{{ID}} = \frac{{CA}}{{CD}}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{IA}}{{CA}} = \frac{{DI}}{{CD}} = \frac{{IA + ID}}{{CA + CD}} = \frac{{DA}}{{CA + CD}}\] suy ra \[\frac{{DI}}{{AD}} = \frac{{CD}}{{CA + CD}}\] (2)
Từ (1) và (2) suy ra: \[\frac{{BD}}{{AB + BD}} = \frac{{CD}}{{CA + CD}}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{BD}}{{AB + BD}} = \frac{{CD}}{{CA + CD}}\]\[ = \frac{{BD + CD}}{{AB + BD + CA + CD}} = \frac{{BC}}{{AB + BC + CA}}\] (3)
Từ (1), (2) và (3) suy ra: \[\frac{{DI}}{{DA}} = \frac{{BC}}{{AB + BC + CA}}\].
Lời giải
Tượng tự câu a) ta có: \[\frac{{EI}}{{EB}} = \frac{{CA}}{{AB + BC + CA}}\]và \[\frac{{FI}}{{FC}} = \frac{{AB}}{{AB + BC + CA}}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{DI}}{{DA}} + \frac{{EI}}{{EB}} + \frac{{FI}}{{FC}} = \]\[\frac{{BC}}{{AB + BC + CA}}\]+ \[\frac{{CA}}{{AB + BC + CA}}\]+ \[\frac{{AB}}{{AB + BC + CA}}\]
\[ = \frac{{AB + BC + CA}}{{AB + BC + CA}} = 1\].
Lời giải

Gọi G là giao điểm của AC và BD.
• Vì DN là phân giác của \[\widehat {ADC}\] trong ∆ADC nên \[\frac{{NA}}{{NC}} = \frac{{AD}}{{DC}}\].
• Vì AM là phân giác của \[\widehat {BAD}\] trong ∆ABD nên \[\frac{{MD}}{{MB}} = \frac{{AD}}{{AB}}\]= \[\frac{{AD}}{{DC}}\] (vì AB = DC).
Suy ra \[\frac{{MD}}{{MB}} = \frac{{NA}}{{NC}}\].
Do đó \[\frac{{NA}}{{MD}} = \frac{{NC}}{{MB}} = \frac{{NA + NC}}{{MD + MB}} = \frac{{AC}}{{BD}} = \frac{{AG}}{{DG}}\] (AC = 2AG; BD = 2BG)
Khi đó \[\frac{{NA}}{{AG}} = \frac{{MD}}{{DG}}\].
Xét ∆AGD có \[\frac{{NA}}{{AG}} = \frac{{MD}}{{DG}}\]nên theo định lí Thalès đảo, ta có MN // AD.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.