Giải SBT Toán 8 CTST Tính chất đường phân giác của tam giác có đáp án
29 người thi tuần này 4.6 374 lượt thi 8 câu hỏi
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
Tổng hợp Lý thuyết & Trắc nghiệm Chương 4 Hình học 8
Bài tập Chia đa thức một biến đã sắp xếp (có lời giải chi tiết)
Đề thi Toán lớp 8 Giữa học kì 2 năm 2020 - 2021 có đáp án (Đề 1)
Bài tập Trường hợp đồng dang thứ ba (có lời giải chi tiết)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
 
Ta có AD là phân giác của \[\widehat {BAC}\] trong ∆ABC, suy ra \[\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}}\].
Suy ra \[\frac{{15}}{{20}} = \frac{{AB}}{{AC}}\] hay \[\frac{{AB}}{{15}} = \frac{{AC}}{{20}}\].
Suy ra \[\frac{{A{B^2}}}{{225}} = \frac{{A{C^2}}}{{400}} = \frac{{A{B^2} + A{C^2}}}{{225 + 400}} = \frac{{B{C^2}}}{{625}}\] (áp dụng định lí Pythagore trong ∆ABC vuông).
Ta có BC = BD + DC = 15 + 20 = 35 (cm).
Nên \[\frac{{A{B^2}}}{{225}} = \frac{{A{C^2}}}{{400}} = \frac{{{{35}^2}}}{{625}} = \frac{{49}}{{25}}\].
Suy ra AB2 \[ = \frac{{49.225}}{{25}}\] = 441 và AC2\[ = \frac{{49.400}}{{25}}\] = 784.
Vậy AB = 21 cm; AC = 28 cm.
Lời giải
 
• Vì AD là phân giác của \[\widehat {BAC}\] trong ∆ABC nên ta có
\[\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}}\]\[ = \frac{6}{9} = \frac{2}{3}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{DB}}{2} = \frac{{DC}}{3} = \frac{{DB + DC}}{{2 + 3}} = \frac{{BC}}{5} = \frac{{10}}{5} = 2\].
Suy ra \[\frac{{DB}}{2} = 2\]và \[\frac{{DC}}{3} = 2\].
Do đó DB = 4 cm; DC = 6 cm.
• Vì AE là phân giác ngoài tại đỉnh A của ∆ABC nên ta có
\[\frac{{EB}}{{EC}} = \frac{{AB}}{{AC}} = \frac{6}{9} = \frac{2}{3}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{EC}}{3} = \frac{{EB}}{2} = \frac{{EC - EB}}{{3 - 2}} = \frac{{BC}}{1} = 10\].
Do đó \[\frac{{EB}}{2} = 10\] suy ra EB = 20 cm.
Vậy DB = 4 cm, DC = 6 cm, EB = 20 cm.
Lời giải
 
• Vì BI là phân giác của \[\widehat {ABC}\] trong ∆ABC nên ta có \[\frac{{IA}}{{ID}} = \frac{{AB}}{{BD}}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{IA}}{{AB}} = \frac{{ID}}{{BD}} = \frac{{IA + ID}}{{AB + BD}} = \frac{{AD}}{{AB + BD}}\] suy ra \[\frac{{ID}}{{AD}} = \frac{{BD}}{{AB + BD}}\] (1)
• Vì CI là phân giác của \[\widehat {ACB}\] trong ∆ABC nên ta có \[\frac{{IA}}{{ID}} = \frac{{CA}}{{CD}}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{IA}}{{CA}} = \frac{{DI}}{{CD}} = \frac{{IA + ID}}{{CA + CD}} = \frac{{DA}}{{CA + CD}}\] suy ra \[\frac{{DI}}{{AD}} = \frac{{CD}}{{CA + CD}}\] (2)
Từ (1) và (2) suy ra: \[\frac{{BD}}{{AB + BD}} = \frac{{CD}}{{CA + CD}}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{BD}}{{AB + BD}} = \frac{{CD}}{{CA + CD}}\]\[ = \frac{{BD + CD}}{{AB + BD + CA + CD}} = \frac{{BC}}{{AB + BC + CA}}\] (3)
Từ (1), (2) và (3) suy ra: \[\frac{{DI}}{{DA}} = \frac{{BC}}{{AB + BC + CA}}\].
Lời giải
Tượng tự câu a) ta có: \[\frac{{EI}}{{EB}} = \frac{{CA}}{{AB + BC + CA}}\]và \[\frac{{FI}}{{FC}} = \frac{{AB}}{{AB + BC + CA}}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{DI}}{{DA}} + \frac{{EI}}{{EB}} + \frac{{FI}}{{FC}} = \]\[\frac{{BC}}{{AB + BC + CA}}\]+ \[\frac{{CA}}{{AB + BC + CA}}\]+ \[\frac{{AB}}{{AB + BC + CA}}\]
\[ = \frac{{AB + BC + CA}}{{AB + BC + CA}} = 1\].
Lời giải
 
Gọi G là giao điểm của AC và BD.
• Vì DN là phân giác của \[\widehat {ADC}\] trong ∆ADC nên \[\frac{{NA}}{{NC}} = \frac{{AD}}{{DC}}\].
• Vì AM là phân giác của \[\widehat {BAD}\] trong ∆ABD nên \[\frac{{MD}}{{MB}} = \frac{{AD}}{{AB}}\]= \[\frac{{AD}}{{DC}}\] (vì AB = DC).
Suy ra \[\frac{{MD}}{{MB}} = \frac{{NA}}{{NC}}\].
Do đó \[\frac{{NA}}{{MD}} = \frac{{NC}}{{MB}} = \frac{{NA + NC}}{{MD + MB}} = \frac{{AC}}{{BD}} = \frac{{AG}}{{DG}}\] (AC = 2AG; BD = 2BG)
Khi đó \[\frac{{NA}}{{AG}} = \frac{{MD}}{{DG}}\].
Xét ∆AGD có \[\frac{{NA}}{{AG}} = \frac{{MD}}{{DG}}\]nên theo định lí Thalès đảo, ta có MN // AD.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo