Giải SBT Toán 8 Chân trời sáng tạo Bài 4. Hệ số góc của đường thẳng có đáp án
56 người thi tuần này 4.6 355 lượt thi 6 câu hỏi
🔥 Đề thi HOT:
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Đề cuối kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án- Đề 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Lời giải
a) Vì đồ thị hàm số y = ax + 2 đi qua điểm A(1; 3) nên 3 = a.1 + 2 Û a = 1.
Vậy a = 1.
b) Vì đồ thị của hàm số y = ax + 2 song song với đường thằng y = –2x + 1 nên \[\left\{ \begin{array}{l}a = - 2\\2 \ne 1\,\,(tm)\end{array} \right.\]
Vậy a = –2.
Lời giải
Lời giải
a) Để đường thẳng y = 2mx + 11 song song với đường thằng y = (1 – m)x + 2 thì:
\[\left\{ \begin{array}{l}2m = 1 - m\\11 \ne 2\,\,(tm)\end{array} \right. \Leftrightarrow 3m = 1 \Leftrightarrow m = \frac{1}{3}\]
Vậy \[m = \frac{1}{3}\].
b) Để đường thẳng y = 2mx + 11 cắt đường thằng y = (1 – m)x + 2 thì:
2m ¹ 1 – m
\[3m \ne 1 \Leftrightarrow m \ne \frac{1}{3}\]
Vậy \[m \ne \frac{1}{3}\].
Lời giải
Lời giải
a) Với x = 4 thì hàm số có giá trị bằng 5 nên thay vào hàm số y = 2x + b ta có:
5 = 2.4 + b Û b = 5 – 8 = –3.
Vậy b = –3.
b) Vì đồ thị của hàm số y = 2x + b cắt trục tung tại điểm M có tung độ bằng 7 nên toạ độ điểm M(0; 7).
Thay M(0; 7) vào y = 2x + b ta được:
2.0 + b = 7 Û b = 7.
Vậy b = 7.
c) Đồ thị của hàm số y = 2x + b đi qua điểm A(1; 5).
Thay A(1; 5) vào y = 2x + b ta được:
2.1 + b = 5 Û b = 5 – 2 = 3
Vậy b = 3.
Lời giải
Lời giải
a) Đồ thị của hàm số y = ax + b là đường thằng d1 đi qua gốc toạ độ nên 0 = a.0 + b.
Do đó b = 0.
Đồ thị hàm số có dạng: y = ax.
Đồ thị y = ax đi qua điểm A(3; 4) thay A(3; 4) vào đồ thị ta được:
\[4 = 3a \Leftrightarrow a = \frac{4}{3}\].
Vậy hàm số cần tìm có phương trình \[y = \frac{4}{3}x\].
b) Đồ thị của hàm số y = ax có hệ số góc bằng \[\frac{{ - 4}}{7}\] hay \[a = \frac{{ - 4}}{7}\].
Vậy hàm số cần tìm có phương trình \[y = \frac{{ - 4}}{7}x\].
c) Vì đồ thị của hàm số y = ax song song với đường thẳng d2: y = –6x – 5 nên a = –6.
Vậy hàm số cần tìm có phương trình y = –6x.
Lời giải
Lời giải
a) Đồ thị của hàm số y = ax + b đi qua điểm A(1; 5) và B(0; 2).
Thay A(1; 5) và B(0; 2) vào hàm số ta có hệ phương trình:
\[\left\{ \begin{array}{l}a.1 + b = 5\\a.0 + b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b = 5\\b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + 2 = 5\\b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = 2\end{array} \right.\].
Vậy hàm số cần tìm có phương trình y = 3x + 2.
b) Đồ thị của hàm số y = ax + b đi qua điểm M(1; 9) và N(0; 1).
Thay M(1; 9) và N(0; 1) vào hàm số ta có hệ phương trình:
\[\left\{ \begin{array}{l}a.1 + b = 9\\a.0 + b = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b = 9\\b = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + 1 = 9\\b = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 8\\b = 1\end{array} \right.\].
Vậy hàm số cần tìm có phương trình y = 8x + 1.
c) Đồ thị của hàm số y = ax + b đi qua điểm P(0; 2) và Q(1; 0).
Thay P(0; 2) và Q(1; 0) vào hàm số ta có hệ phương trình:
\[\left\{ \begin{array}{l}a.0 + b = 2\\a.1 + b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 2\\a + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 2\\a = - 2\end{array} \right.\]
Vậy hàm số cần tìm có phương trình y = –2x + 2.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
71 Đánh giá
50%
40%
0%
0%
0%