Câu hỏi:
13/07/2024 315Cho hình bình hành ABCD có tia phân giác của góc A cắt đường chéo BD tại M và phân giác của góc D cắt đường chéo AC tại N. Chứng minh MN // AD.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi G là giao điểm của AC và BD.
• Vì DN là phân giác của \[\widehat {ADC}\] trong ∆ADC nên \[\frac{{NA}}{{NC}} = \frac{{AD}}{{DC}}\].
• Vì AM là phân giác của \[\widehat {BAD}\] trong ∆ABD nên \[\frac{{MD}}{{MB}} = \frac{{AD}}{{AB}}\]= \[\frac{{AD}}{{DC}}\] (vì AB = DC).
Suy ra \[\frac{{MD}}{{MB}} = \frac{{NA}}{{NC}}\].
Do đó \[\frac{{NA}}{{MD}} = \frac{{NC}}{{MB}} = \frac{{NA + NC}}{{MD + MB}} = \frac{{AC}}{{BD}} = \frac{{AG}}{{DG}}\] (AC = 2AG; BD = 2BG)
Khi đó \[\frac{{NA}}{{AG}} = \frac{{MD}}{{DG}}\].
Xét ∆AGD có \[\frac{{NA}}{{AG}} = \frac{{MD}}{{DG}}\]nên theo định lí Thalès đảo, ta có MN // AD.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có đường trung tuyến AM (M ∈ BC). Tia phân giác của \[\widehat {AMB}\]cắt AB tại D, tia phân giác của \[\widehat {AMC}\] cắt AC tại E.
Gọi I là giao điểm của DE với AM. Chứng mình I là trung điểm của DE.
Câu 2:
Cho tam giác ABC có các đường phân giác AD, BE, CF (D ∈ BC, E ∈ AC, F ∈ AB) cắt nhau tại I. Chứng minh:
\[\frac{{DI}}{{DA}} + \frac{{EI}}{{EB}} + \frac{{FI}}{{FC}} = 1\].
Câu 3:
Cho tam giác ABC vuông tại A. Tia phân giác của \[\widehat {BAC}\] cắt BC tại D. Cho biết DB = 15cm, DC = 20 cm Tính độ dài AB, AC.
Câu 4:
Cho tam giác ABC có các đường phân giác AD, BE, CF (D ∈ BC, E ∈ AC, F ∈ AB) cắt nhau tại I. Chứng minh:
\[\frac{{DI}}{{DA}} = \frac{{BC}}{{AB + BC + CA}}\];
Câu 5:
Cho tam giác ABC có đường trung tuyến AM (M ∈ BC). Tia phân giác của \[\widehat {AMB}\]cắt AB tại D, tia phân giác của \[\widehat {AMC}\] cắt AC tại E.
Chứng minh DE // BC;
Câu 6:
Cho tam giác ABC cân ở A. Tia phân giác của \[\widehat {ABC}\] cắt AC tại D. Cho biết BC= 10 cm, AB = 15 cm. Tính DA, DC.
về câu hỏi!