Câu hỏi:

13/07/2024 2,009

Cho hình bình hành ABCD. Vẽ hình bình hành AECF (E AB, F CD). Chứng minh rằng ba đường thẳng EF, AC, BD đồng quy.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD. Vẽ hình bình hành AECF (E ∈ AB, F ∈ CD). Chứng minh rằng ba đường thẳng EF, AC, BD đồng quy. (ảnh 1)

Gọi O là giao điểm của ACBD.

Vì ABCD là hình bình hành nên O là trung điểm của ACBD. (1)

Xét hình bình hành AECFO là trung điểm của AC nên O là trung điểm của EF (2)

Từ (1) và (2) suy ra ba đường thẳng EF, AC, BD đồng quy tại O.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD. Gọi HK lần lượt là chân đường cao hạ từ A và C đến BD.

a) Chứng minh rằng tứ giác AHCK là hình bình hành.

b) Gọi M là giao điểm của AKBC, N là giao điểm của CHAD. Chứng minh AN = CM.

c) Gọi O là trung điểm của HK. Chứng minh M, O, N thẳng hàng.

Xem đáp án » 13/07/2024 8,494

Câu 2:

Cho hình bình hành ABCD. Trên các cạnh ABCD, lần lượt lấy các điểm MN sao cho AM = CN. Gọi O là giao điểm của MNAC. Chứng minh rằng ba điểm B, O, D thẳng hàng.

Xem đáp án » 13/07/2024 8,064

Câu 3:

Cho hình bình hành ABCD có hai đường chéo cắt nhau tại O. Qua O, vẽ một đường thẳng cắt ABCD lần lượt tại M, N. Chứng minh rằng O là trung điểm của MN.

Xem đáp án » 13/07/2024 7,914

Câu 4:

Cho hình bình hành ABCD. Trên đường chéo BD lấy hai điểm M và N sao choBM=DN=13BD.

a) Chứng minh ∆AMB = ∆CND.

b) Chứng minh rằng tứ giác AMCN là hình bình hành.

c) Gọi O là giao điểm của AC và BD, I là giao điểm của AM và BC. Chứng minh rằng AM = 2MI.

d) Gọi K là giao điểm của CN và AD. Chứng minh I và K đối xứng với nhau qua O.

Xem đáp án » 13/07/2024 7,724

Câu 5:

Cho hình bình hành ABCD có hai đường chéo cắt nhau tại O. Gọi MN lần lượt là trung điểm của OBOD. Chứng minh tứ giác AMCN là hình bình hành.

Xem đáp án » 13/07/2024 7,614

Câu 6:

Cho hình bình hành ABCDAD = 2AB. Gọi M là trung điểm của AD. Kẻ CE vuông góc với AB tại E, MF vuông góc với CE tại F, MF cắt BC tại N. Chứng minh rằng:

a) Tứ giác MDCN là hình thoi;

b) Tam giác EMC là tam giác cân;

c) BAD^=2AEM^.

Xem đáp án » 13/07/2024 6,273

Câu 7:

Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC, CA. Chứng minh rằng tứ giác MNPQ là hình bình hành.

Xem đáp án » 13/07/2024 2,344

Bình luận


Bình luận