Câu hỏi:

12/07/2024 315

Ở bài học trước, ta đã học đồ thị của một hàm số trên mặt phẳng tọa độ. Trong bài học này, ta sẽ tìm hiểu một trường hợp riêng trong đồ thị của hàm số, đó là đồ thị của hàm số bậc nhất.

Đồ thị của hàm số bậc nhất y = ax + b (a ≠ 0) có tính chất gì?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Sau khi học xong bài này ta sẽ giải quyết bài toán này như sau:

Đồ thị hàm số y = ax + b (a ≠ 0) là một đường thẳng.

• Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng ba hay đồ thị hàm số đi qua điểm ba;  0.

• Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng b hay đồ thị hàm số đi qua điểm (0; b).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo đề bài, đường thẳng y = ax + b (a ≠ 0) có hệ số góc bằng – 1 nên đường thẳng có dạng y = – x + b.

Mặt khác, đường thẳng đi qua điểm M(1; 2) nên ta có:

– 1 + b = 2 suy ra b = 3.

Do đó, đường thẳng cần tìm là y = – x + 3.

• Với x = 0 thì y = – 0 + 3 = 0 + 3 = 3, ta được điểm A(0; 3) thuộc đồ thị của hàm số y = – x + 3.

• Với y = 0 thì – x + 3 = 0 suy ra x = 3, ta được điểm B(3; 0) thuộc đồ thị của hàm số y = – x + 3.

Do đó, đồ thị của hàm số y = – x + 3 là đường thẳng đi qua hai điểm A(0; 3) và B(3; 0).

Ta vẽ đồ thị hàm số như sau:

Xác định đường thẳng y = ax + b (a ≠ 0) có hệ số góc bằng – 1 và đi qua điểm M(1; 2). Sau đó vẽ đường thẳng tìm được trên mặt phẳng tọa độ. (ảnh 1)

Lời giải

a) Đồ thị hàm số y = 3x.

Với x = 1 thì y = 3 . 1 = 3, ta được điểm A(1; 3) thuộc đồ thị của hàm số y = 3x.

Vậy đồ thị của hàm số y = 3x là đường thẳng đi qua hai điểm O(0; 0) và A(1; 3).

Khi đó, đồ thị hàm số y = 3x được biểu diễn như hình vẽ:

Vẽ đồ thị của mỗi hàm số sau: a) y = 3x; (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP