Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là A.

Ta có: \(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}} = \frac{{CA}}{{\sin B}}\)
\( \Rightarrow \left\{ \begin{array}{l}BC = \frac{{\sin A}}{{\sin C}}\,.\,AB\\CA = \frac{{\sin B}}{{\sin C}}\,.\,AB\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}BC = 2.6 = 12\\CA = \frac{4}{3}.6 = 8\end{array} \right.\).
Vậy chu vi tam giác ABC là: AB + BC +CA = 6 + 12 + 8 = 26.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Hàm số y = ln(x2 – 2mx + m) có tập xác định D = ℝ khi và chỉ khi
x2 – 2mx + 4 > 0 với mọi x ∈ ℝ.
\( \Rightarrow \left\{ \begin{array}{l}\Delta ' < 0\forall x\\1 > 0\end{array} \right.\)
\( \Leftrightarrow {m^2} - 4 < 0 \Leftrightarrow - 2 < m < 2\)
Vậy \( - 2 < m < 2\) thỏa mãn yêu cầu bài toán.
Lời giải
Lời giải
Đáp án đúng là: D
Xét \(y = \frac{{\ln x - 6}}{{\ln x - 2m}}\) có điều kiện \(\left\{ \begin{array}{l}\ln x \ne 2m\\x > 0\end{array} \right.\).
Vì x ∈ (1; e) nên ln x ∈ (0; 1).
Ta có: \(y' = \frac{{6 - 2m}}{{{{\left( {\ln x - 2m} \right)}^2}}}.\frac{1}{x}\).
Hàm số đồng biến trên khoảng (1; e) nên ta có:
\(\left\{ \begin{array}{l}6 - 2m > 0\\2m \notin \left( {0;\,\,1} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 3\\m \notin \left( {0;\frac{1}{2}} \right)\end{array} \right.\).
Mà m là số nguyên dương nên m ∈ {1; 2}.
Vậy số phần tử của S là 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.