Một mảnh đất hình chữ nhật có chu vi bằng 40 m. Nếu tăng chiều rộng thêm 2 m giảm chiều dài đi 2 m thì diện tích tăng thêm 4 m2. Tính chiều dài, chiều rộng ban đầu của hình chữ nhật.
Quảng cáo
Trả lời:
Lời giải
Gọi chiều rộng hình chữ nhật là x (x > 0), chiều dài hình chữ nhật là y (y > 0).
Ta có chu vi hình chữ nhật bằng 40 nên (x + y) . 2= 40
x + y = 20 ⇔ y = 20 – x
Vì tăng chiều rộng thêm 2 m giảm chiều dài đi 2 m thì diện tích tăng thêm 4 m2 nên: (x + 2)(y − 2)= xy + 4
⇔ xy − 2x + 2y − 4= xy + 4
⇔ x – y + 4 = 0
⇔ x − (20 − x) + 4 = 0
⇔ 2x = 16
⇔ x = 8
Suy ra y = 12.
Vậy chiều rộng của hình chữ nhật là 8 m, chiều dài của hình chữ nhật là 12 m.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Hàm số y = ln(x2 – 2mx + m) có tập xác định D = ℝ khi và chỉ khi
x2 – 2mx + 4 > 0 với mọi x ∈ ℝ.
\( \Rightarrow \left\{ \begin{array}{l}\Delta ' < 0\forall x\\1 > 0\end{array} \right.\)
\( \Leftrightarrow {m^2} - 4 < 0 \Leftrightarrow - 2 < m < 2\)
Vậy \( - 2 < m < 2\) thỏa mãn yêu cầu bài toán.
Lời giải
Lời giải
Đáp án đúng là A.

Ta có: \(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}} = \frac{{CA}}{{\sin B}}\)
\( \Rightarrow \left\{ \begin{array}{l}BC = \frac{{\sin A}}{{\sin C}}\,.\,AB\\CA = \frac{{\sin B}}{{\sin C}}\,.\,AB\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}BC = 2.6 = 12\\CA = \frac{4}{3}.6 = 8\end{array} \right.\).
Vậy chu vi tam giác ABC là: AB + BC +CA = 6 + 12 + 8 = 26.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.