Câu hỏi:

13/07/2024 403

b) Đường tròn ngoại tiếp tam giác BPQ luôn đi qua một điểm cố định khác B.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b. Lấy điểm K sao cho K khác B là giao điểm của đường tròn ngoại tiếp tam giác BPQ và đoạn thẳng AB.

Ta có:

PQK^=KBP^ (Hai góc nội tiếp cùng chắn cung PK)

AQK^=ABP^

Xét ∆AQK và ∆ABP có:

AQK^=ABP^ (cmt)

A^  : góc chung

Þ ∆AQK ∆ABP (g.g)

AQAB=AKAPAK.AB=AP.AQ (2)

Từ (1) và (2) suy ra AK.AB=AI2=AP.AQ

Mà I là trung điểm của AB nên AK.2AI=AI22AK=AI

Vậy K là trung điểm của AI nên K cố định.

Vậy đường tròn ngoại tiếp tam giác BPQ luôn đi qua một điểm cố định khác B là K.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) Áp dụng định lý Vi-ét với x1, x2 hai nghiệm của phương trình thì:

x1+x2=2m1x1x2=2m5.

Khi đó, để x1 < 2 < x2 Û (x1 − 2)(x2 − 2) < 0

Û x1x2 − 2(x1 + x2) + 4 < 0

Û 2m − 5 − 4(m − 1) + 4 < 0

Û − 2m + 3 < 0 .

Vậy m>32  là giá trị của m thỏa mãn.

Lời giải

Để tứ giác ABCD là hình bình hành thì:   CD=BA

xD+5;yD1=2+1;44

xD+5;yD1=3;0

xD+5=3yD1=0xD=2yD=1

Vậy D(−2; 1).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP