Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Giả sử a2 + b2 + c2 ≥ ab + bc + ca
Û 2(a2 + b2 + c2) ≥ 2(ab + bc + ca)
Û 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca
Û (a2 − 2ab + b2) + (b2 − 2bc + c2) + (c2 − 2ca + a2) ≥ 0
Û (a − b)2 + (b − c)2 + (c − a)2 ≥ 0
Mà (a − b)2 ≥ 0; (b − c)2 ≥ 0; (c − a)2 ≥ 0 nên suy ra
(a − b)2 + (b − c)2 + (c − a)2 ≥ 0 (luôn đúng).
Vậy a2 + b2 + c2 ≥ ab + bc + ca (đpcm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
b) Tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn x1 < 2 < x2.
Câu 2:
Câu 4:
Trong mặt phẳng Oxy, cho A(2; 4), B(−1; 4), C(−5; 1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành.
Câu 5:
Từ điểm P nằm ngoài đường tròn (O; R) vẽ 2 tiếp tuyến PA, PB tới (O) với A, B là các tiếp điểm. Vẽ AH vuông góc với đường kính BC. Chứng minh PC cắt AH tại trung điểm I của AH.
Câu 6:
b) Vẽ đồ thị hàm số tìm được ở câu a . Tính diện tích tam giác tạo bởi đồ thị hàm số với hai trục tọa độ.
Câu 7:
Cho hình chóp S.ABCD. Gọi M, N, P lần lượt nằm trên các cạnh SA, SB, SC. Tìm giao điểm của (MNP) và SD.
về câu hỏi!