Câu hỏi:

13/07/2024 485

b) Chứng minh OB.AH = CH.PB và E là trung điểm của AH.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Gọi D là giao điểm của đường thẳng AC và BP.

Ta có BAC^=90°  (BC là đường kính)

 BAD^=90°(kề bù) hay DAP^+PAB^=90°  (1)

∆ABD vuông tại A (cmt) ABD^+ADB^=90°  (2)

Mặt khác PA, PB là hai tiếp tuyến của (O) nên PA = PB vàPAB^=PBA^  (3)

Từ (1), (2), (3) DAP^=ADP^

Do đó ∆APD cân tại P

Þ PA = PD, mà PA = PB (tính chất hai tiếp tuyến cắt nhau)

Þ PD = PB

Lại có DB // AH (^ BC).

Xét ∆PBC có: EH // PB EHPB=ECPC  (4) (định lí Ta-lét)

Tương tự PCD có: AE // PD AEDP=ECPC  (5)

Từ (4), (5)  EHPB=AEDPEH=EA(vì PB = PD).

Vậy PC cắt AH tại trung điểm E của AH.

Do EH // BP (^ BC)

EHPB=CHCB2EHPB=CHCB2

AHPB=CHOBOB.AH=CH.PB.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

b) Tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn x1 < 2 < x2.

Xem đáp án » 13/07/2024 34,719

Câu 2:

Trong mặt phẳng Oxy, cho A(2; 4), B(−1; 4), C(−5; 1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành.

Xem đáp án » 13/07/2024 15,766

Câu 3:

b) Vẽ đồ thị hàm số tìm được ở câu a . Tính diện tích tam giác tạo bởi đồ thị hàm số với hai trục tọa độ.

Xem đáp án » 13/07/2024 9,188

Câu 4:

Từ điểm P nằm ngoài đường tròn (O; R) vẽ 2 tiếp tuyến PA, PB tới (O) với A, B là các tiếp điểm. Vẽ AH vuông góc với đường kính BC. Chứng minh PC cắt AH tại trung điểm I của AH.

Xem đáp án » 13/07/2024 8,443

Câu 5:

Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật biết rằng SA vuông góc (ABCD), SC hợp với đáy một góc 45° và AB = 3a, BC =4a. Tính thể tích khối chóp.

Xem đáp án » 13/07/2024 8,131

Câu 6:

Xác định parabol (p): y = ax+ bx + c, (a0), biết (p) cắt trục tung tại điểm có tung độ bằng 1 và có giá trị nhỏ nhất bằng 34  khi x=12 .

Xem đáp án » 13/07/2024 6,884

Câu 7:

Cho hình lục giác đều ABCDEF tâm O. Chứng minh:

OA+OB+OC+OD+OE+OF=0.

Xem đáp án » 13/07/2024 6,441
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua