Câu hỏi:

13/07/2024 506

b) Chứng minh OB.AH = CH.PB và E là trung điểm của AH.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Gọi D là giao điểm của đường thẳng AC và BP.

Ta có BAC^=90°  (BC là đường kính)

 BAD^=90°(kề bù) hay DAP^+PAB^=90°  (1)

∆ABD vuông tại A (cmt) ABD^+ADB^=90°  (2)

Mặt khác PA, PB là hai tiếp tuyến của (O) nên PA = PB vàPAB^=PBA^  (3)

Từ (1), (2), (3) DAP^=ADP^

Do đó ∆APD cân tại P

Þ PA = PD, mà PA = PB (tính chất hai tiếp tuyến cắt nhau)

Þ PD = PB

Lại có DB // AH (^ BC).

Xét ∆PBC có: EH // PB EHPB=ECPC  (4) (định lí Ta-lét)

Tương tự PCD có: AE // PD AEDP=ECPC  (5)

Từ (4), (5)  EHPB=AEDPEH=EA(vì PB = PD).

Vậy PC cắt AH tại trung điểm E của AH.

Do EH // BP (^ BC)

EHPB=CHCB2EHPB=CHCB2

AHPB=CHOBOB.AH=CH.PB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) Áp dụng định lý Vi-ét với x1, x2 hai nghiệm của phương trình thì:

x1+x2=2m1x1x2=2m5.

Khi đó, để x1 < 2 < x2 Û (x1 − 2)(x2 − 2) < 0

Û x1x2 − 2(x1 + x2) + 4 < 0

Û 2m − 5 − 4(m − 1) + 4 < 0

Û − 2m + 3 < 0 .

Vậy m>32  là giá trị của m thỏa mãn.

Lời giải

Để tứ giác ABCD là hình bình hành thì:   CD=BA

xD+5;yD1=2+1;44

xD+5;yD1=3;0

xD+5=3yD1=0xD=2yD=1

Vậy D(−2; 1).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP