Câu hỏi:

17/04/2023 372 Lưu

Cho phương trình x²(m2)x + m5 = 0 (1) trong đó m là tham số. Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

(m2)x + m5 = 0 (1)

Ta có: Δ=m224m5=m28m+24  .

Để (1) luôn có 2 nghiệm phân biệt với mọi giá trị của m khi

Δ0m28m+240

m42+80 (luôn đúng, với mọi m).

Vậy phương trình (1) luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) Áp dụng định lý Vi-ét với x1, x2 hai nghiệm của phương trình thì:

x1+x2=2m1x1x2=2m5.

Khi đó, để x1 < 2 < x2 Û (x1 − 2)(x2 − 2) < 0

Û x1x2 − 2(x1 + x2) + 4 < 0

Û 2m − 5 − 4(m − 1) + 4 < 0

Û − 2m + 3 < 0 .

Vậy m>32  là giá trị của m thỏa mãn.

Lời giải

Để tứ giác ABCD là hình bình hành thì:   CD=BA

xD+5;yD1=2+1;44

xD+5;yD1=3;0

xD+5=3yD1=0xD=2yD=1

Vậy D(−2; 1).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP