Câu hỏi:
17/04/2023 109Cho phương trình x² − (m − 2)x + m − 5 = 0 (1) trong đó m là tham số. Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
x² − (m − 2)x + m − 5 = 0 (1)
Ta có: .
Để (1) luôn có 2 nghiệm phân biệt với mọi giá trị của m khi
(luôn đúng, với mọi m).
Vậy phương trình (1) luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
b) Tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn x1 < 2 < x2.
Câu 2:
Câu 3:
Trong mặt phẳng Oxy, cho A(2; 4), B(−1; 4), C(−5; 1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành.
Câu 4:
Từ điểm P nằm ngoài đường tròn (O; R) vẽ 2 tiếp tuyến PA, PB tới (O) với A, B là các tiếp điểm. Vẽ AH vuông góc với đường kính BC. Chứng minh PC cắt AH tại trung điểm I của AH.
Câu 6:
b) Vẽ đồ thị hàm số tìm được ở câu a . Tính diện tích tam giác tạo bởi đồ thị hàm số với hai trục tọa độ.
Câu 7:
Cho hình chóp S.ABCD. Gọi M, N, P lần lượt nằm trên các cạnh SA, SB, SC. Tìm giao điểm của (MNP) và SD.
về câu hỏi!