Câu hỏi:
13/07/2024 9,745
Tìm giá trị thực của tham số m khác 0 để hàm số y = mx2 – 2mx – 3m – 2 có giá trị nhỏ nhất bằng – 10 trên ℝ.
Tìm giá trị thực của tham số m khác 0 để hàm số y = mx2 – 2mx – 3m – 2 có giá trị nhỏ nhất bằng – 10 trên ℝ.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Để hàm số đạt giá trị nhỏ nhất bằng – 10 trên ℝ thì
\(\left\{ \begin{array}{l}a = m > 0\\\frac{{ - \Delta }}{{4{\rm{a}}}} = - 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\frac{{{{\left( { - 2m} \right)}^2} - 4.m.\left( { - 3m - 2} \right)}}{{4m}} = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\frac{{16{m^2} + 8m}}{{4m}} = 10\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\16{m^2} + 8m = 40m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\16{m^2} - 32m = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\16m\left( {m - 2} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\left[ \begin{array}{l}m = 0\\m = 2\end{array} \right.\end{array} \right. \Leftrightarrow m = 2\)
Vậy m = 2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Xét tam giác ADB và tam giác ADC có
AB = AC (giả thiết)
DB = DC (vì D là trung điểm của BC)
AD là cạnh chung
Suy ra △ADB = △ADC ( c.c.c)
b) Vì △ADB = △ADC (chứng minh câu a)
Nên \(\widehat {BA{\rm{D}}} = \widehat {CA{\rm{D}}}\) ( 2 góc tương ứng)
Suy ra AD là phân giác của góc BAC
c) Vì △ADB = △ADC (chứng minh câu a)
Nên \(\widehat {A{\rm{DB}}} = \widehat {A{\rm{DC}}}\) ( 2 góc tương ứng)
Mà \(\widehat {A{\rm{DB}}} + \widehat {A{\rm{DC}}} = 180^\circ \) (2 góc kề bù)
Suy ra \(\widehat {A{\rm{DB}}} = \widehat {A{\rm{DC}}} = 90^\circ \)
Hay AD ⊥ BC
Vậy AD ⊥ BC.
Lời giải
a) Điều kiện xác định x ≠ {– 2; 0; 2; 3}
Ta có \(P = \left( {\frac{{2 + x}}{{2 - x}} - \frac{{4{{\rm{x}}^2}}}{{{x^2} - 4}} - \frac{{2 - x}}{{2 + x}}} \right):\frac{{{x^2} - 3{\rm{x}}}}{{2{{\rm{x}}^2} - {x^3}}}\)

b) Với x ≠ {– 2; 0; 2; 3}, ta có
\(P = \frac{{4{{\rm{x}}^2}}}{{x - 3}} = \frac{{4x(x - 3) + 12\left( {x - 3} \right) + 36}}{{x - 3}} = 4{\rm{x}} + 12 + \frac{{36}}{{x - 3}}\)
\(P:4 = x + 3 + \frac{9}{{x - 3}}\)
Để P ⋮ 4 thì 9 ⋮ x – 3
Suy ra x – 3 ∈ Ư(9) = {1; 3; 9; – 1; – 3; – 9}
Do đó x ∈ {4; 6; 12; 2; 0; – 6}
Mà x ≠ {– 2; 0; 2; 3}
Suy ra x ∈ {4; 6; 12; – 6}
Vậy x ∈ {4; 6; 12; – 6}.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.