Câu hỏi:

13/07/2024 37,337

Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh

a) Tam giác ADB bằng tam giác ADC.

b) AD là tia phân giác của góc BAC.

c) AD vuông góc BC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh (ảnh 1)

a) Xét tam giác ADB và tam giác ADC

AB = AC (giả thiết)

DB = DC (vì D là trung điểm của BC)

AD là cạnh chung

Suy ra ADB = ADC ( c.c.c)

b) ADB = ADC (chứng minh câu a)

Nên \(\widehat {BA{\rm{D}}} = \widehat {CA{\rm{D}}}\) ( 2 góc tương ứng)

Suy ra AD là phân giác của góc BAC

c) ADB = ADC (chứng minh câu a)

Nên \(\widehat {A{\rm{DB}}} = \widehat {A{\rm{DC}}}\) ( 2 góc tương ứng)

\(\widehat {A{\rm{DB}}} + \widehat {A{\rm{DC}}} = 180^\circ \) (2 góc kề bù)

Suy ra \(\widehat {A{\rm{DB}}} = \widehat {A{\rm{DC}}} = 90^\circ \)

Hay AD BC

Vậy AD BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Điều kiện xác định x ≠ {– 2; 0; 2; 3}

Ta có \(P = \left( {\frac{{2 + x}}{{2 - x}} - \frac{{4{{\rm{x}}^2}}}{{{x^2} - 4}} - \frac{{2 - x}}{{2 + x}}} \right):\frac{{{x^2} - 3{\rm{x}}}}{{2{{\rm{x}}^2} - {x^3}}}\)

Cho biểu thức P = ( (2 + x) / (2 - x) - 4x^2 / (x^2 - 4) - (2 - x) / (2 + x) (ảnh 1)

b) Với x ≠ {– 2; 0; 2; 3}, ta có

\(P = \frac{{4{{\rm{x}}^2}}}{{x - 3}} = \frac{{4x(x - 3) + 12\left( {x - 3} \right) + 36}}{{x - 3}} = 4{\rm{x}} + 12 + \frac{{36}}{{x - 3}}\)

\(P:4 = x + 3 + \frac{9}{{x - 3}}\)

Để P 4 thì 9 x – 3

Suy ra x – 3 Ư(9) = {1; 3; 9; – 1; – 3; – 9}

Do đó x {4; 6; 12; 2; 0; – 6}

Mà x ≠ {– 2; 0; 2; 3}

Suy ra x {4; 6; 12; – 6}

Vậy x {4; 6; 12; – 6}.

Câu 2

Lời giải

Đáp án đúng là: D

Xét tam giác ABC có:

Vậy ta chọn đáp án D.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP