Câu hỏi:
13/07/2024 572Cho hình chóp đỉnh S có đáy là hình thang ABCD với AB là đáy lớn. Gọi M, N theo thứ tự là trung điểm của các cạnh SB và SC.
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC).
b) Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN).
c) Tìm thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (AMN).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Gọi E là giao điểm của AD và BC.
Ta có \[\left\{ \begin{array}{l}E \in AD \Rightarrow E \in \left( {SAD} \right)\\E \in BC \Rightarrow E \in \left( {SBC} \right)\end{array} \right.\]
Do đó E = (SAD) ∩ (SBC)
Mà S = (SAD) ∩ (SBC)
Suy ra SE = (SAD) ∩ (SBC).
b) Trong mp(SBE) gọi giao điểm của MN và SE là F.
Trong mp(SAD) gọi giao điểm của AF là SD là P.
Suy ra P = SD ∩ (AMN).
c) Ta có
Vậy thiết diện thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (AMN) là tứ giác AMNP.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hình vuông ABCD. Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE = CF.
a) Chứng minh tam giác EDF vuông cân.
b) Gọi I là trung điểm của EF. Chứng minh BI = DI.
c) Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh O, C, I thẳng hàng.
Câu 3:
Câu 4:
Cho hình vuông ABCD. Trên cạnh các AD, DC lần lượt lấy các điểm E, F sao cho AE = DF. Gọi M, N lần lượt là trung điểm của EF, BF.
a) Chứng minh các tam giác ADF và BAE bằng nhau.
b) Chứng minh MN vuông góc AF.
Câu 5:
Cho tam giác ABC nhọn. Chứng minh rằng BC2 = AB2 + AC2 – 2AB.AC.cosA.
Câu 6:
Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN = BM. Chứng minh:
a) \(\widehat {ABI} = \widehat {ACI}\)và AI là tia phân giác của góc BAC.
b) AM = AN.
c) AI vuông góc với BC.
Câu 7:
Số tự nhiên thích hợp để điền vào dãy số sau: 3, 17, 59, 185, 563, ... là số nào?
về câu hỏi!