Câu hỏi:
13/07/2024 155Cho x; y là 2 số không âm thỏa mãn x + y = 1. Chứng minh: \(\frac{x}{{y + 1}} + \frac{y}{{x + 1}} \le 1\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Vì x; y là 2 số không âm thỏa mãn x + y = 1
Nên 0 ≤ x; y ≤ 1
Suy ra \(\left\{ \begin{array}{l}{x^2} \le {\rm{x}}\\{y^2} \le y\end{array} \right.\)
Do đó x2 + y2 ≤ x + y = 1
Ta có
\(\frac{x}{{y + 1}} + \frac{y}{{x + 1}} = \frac{{{x^2} + {y^2} + x + y}}{{(x + 1)(y + 1)}} = \frac{{{x^2} + {y^2} + 1}}{{xy + x + y + 1}} = \frac{{{x^2} + {y^2} + 1}}{{xy + 2}}\)
Suy ra
\(\frac{x}{{y + 1}} + \frac{y}{{x + 1}} \le \frac{{{x^2} + {y^2} + 1}}{2} \le \frac{{1 + 1}}{2} = 1\)
Dấu “=” xảy ra khi x = 0, y = 1 hoặc x = 1, y = 0
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hình vuông ABCD. Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE = CF.
a) Chứng minh tam giác EDF vuông cân.
b) Gọi I là trung điểm của EF. Chứng minh BI = DI.
c) Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh O, C, I thẳng hàng.
Câu 3:
Câu 4:
Cho hình vuông ABCD. Trên cạnh các AD, DC lần lượt lấy các điểm E, F sao cho AE = DF. Gọi M, N lần lượt là trung điểm của EF, BF.
a) Chứng minh các tam giác ADF và BAE bằng nhau.
b) Chứng minh MN vuông góc AF.
Câu 5:
Cho tam giác ABC nhọn. Chứng minh rằng BC2 = AB2 + AC2 – 2AB.AC.cosA.
Câu 6:
Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN = BM. Chứng minh:
a) \(\widehat {ABI} = \widehat {ACI}\)và AI là tia phân giác của góc BAC.
b) AM = AN.
c) AI vuông góc với BC.
Câu 7:
Số tự nhiên thích hợp để điền vào dãy số sau: 3, 17, 59, 185, 563, ... là số nào?
về câu hỏi!