Câu hỏi:

26/04/2023 2,086

Cho tam giác ABC vuông tại A, đường cao AH. Qua H kẻ các đường thẳng song song với AB và AC lần lượt cắt AC tại E, AB tại D.

a) Chứng minh rằng: Tứ giác ADHE là hình chữ nhật.

b) Gọi M, N lần lượt là trung điểm của BH và CH. Biết AB = 6 cm; AC = 8 cm. Tính BC, DM, DM + EN?

c) Chứng minh rằng: Tứ giác DMNE là hình thang.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A, đường cao AH. Qua H kẻ các đường thẳng song (ảnh 1)

a) Xét tứ giác ADHE có AD // EH và DH // AE

Suy ra ADHE là hình bình hành

\(\widehat {DA{\rm{E}}} = 90^\circ \)

Suy ra ADHF là hình chữ nhật.

b) Áp dụng định lý Pytago trong tam giác vuông ABC có:

BC2 = AB2 + AC2

Thay số: BC2 = 62 + 82 = 100

Suy ra BC = 10

Xét tam giác ABC vuông tại A có AH . BC = AB . AC

Thay số: AH . 10 = 6 . 8

Suy ra AH = 4,8

Vì tam giác ABH vuông tại H, theo định lý Pytago ta có

AB2 = AH2 + HB2

Thay số: 62 = 4,82 + HB2

Suy ra BH = 3,6

Vì tam giác BHD vuông tại D có DM là trung tuyến

Suy ra \[DM = MH = \frac{1}{2}BH = \frac{1}{2}.3,6 = 1,8\]

Ta có CH = BC – BH = 10 – 4,8 = 5,2.

Vì tam giác CHE vuông tại E có EN là trung tuyến

Suy ra \[EN = NH = \frac{1}{2}CH = \frac{1}{2}.5,2 = 2,6\].

Ta có DM + EN = 1,8 + 2,6 = 4,4 (cm)

c) Gọi O là giao điểm của AH và DE.

Vì ADHE là hình chữ nhật nên O là trung điểm của AH, DE và AH = DE.

Suy ra OA = OD = OE = OH

Do đó tam giác OHD cân tại O

Suy ra \(\widehat {O{\rm{D}}H} = \widehat {OH{\rm{D}}}\)

Vì DM = MH (chứng minh câu b) nên tam giác DMH cân tại M

Suy ra \(\widehat {{\rm{MD}}H} = \widehat {MH{\rm{D}}}\)

Ta có \(\widehat {MHD} + \widehat {OH{\rm{D}}} = \widehat {AHB} = 90^\circ \)

\(\widehat {O{\rm{D}}H} = \widehat {OH{\rm{D}}}\), \(\widehat {{\rm{MD}}H} = \widehat {MH{\rm{D}}}\)

Suy ra \(\widehat {MDH} + \widehat {O{\rm{DH}}} = \widehat {M{\rm{D}}O} = 90^\circ \)

Do đó DM DO                      (1)

Vì OE = OH

Do đó tam giác OEH cân tại O

Suy ra \(\widehat {OEH} = \widehat {OHE}\)

Vì HN = EN (chứng minh câu b) nên tam giác ENH cân tại N

Suy ra \(\widehat {{\rm{NE}}H} = \widehat {NHE}\)

Ta có \(\widehat {OHE} + \widehat {EHN} = \widehat {AHN} = 90^\circ \)

\(\widehat {OEH} = \widehat {OHE}\), \(\widehat {{\rm{NE}}H} = \widehat {NHE}\)

Suy ra \(\widehat {OEH} + \widehat {OEN} = \widehat {OEN} = 90^\circ \)

Do đó EN EO                       (2)

Từ (1) và (2) suy ra DM // EN

Vậy DENM là hình thang.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho HM = MK.

a) Chứng minh: Tứ giác BHCK là hình bình hành.

b) Chứng minh BK vuông góc AB và CK vuông góc AC.

c) Gọi I là điểm đối xứng với H qua BC. Chứng minh: Tứ giác BIKC là hình thang cân.

d) BK cắt HI tại G. Tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.

Xem đáp án » 12/07/2024 46,882

Câu 2:

Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là 2 tiếp điểm). Kẻ cát tuyến ADE với đường tròn (O) (D nằm giữa A và E).

a) Chứng minh: bốn điểm A, B, O, C cùng thuộc một đường tròn.

b) Chứng minh: OA BC tại H và OD2 = OH . OA. Từ đó suy ra tam giác OHD đồng dạng với tam giác ODA.

c) Chứng minh CB trùng với tia phân giác của góc DHE.

d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, BC lần lượt tại M và N. Chứng minh: D là trung điểm của MN.

Xem đáp án » 12/07/2024 27,587

Câu 3:

Cho hình vuông ABCD. Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE = CF.

a) Chứng minh tam giác EDF vuông cân.

b) Gọi I là trung điểm của EF. Chứng minh BI = DI.

c) Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh O, C, I thẳng hàng.

Xem đáp án » 12/07/2024 21,052

Câu 4:

Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN = BM. Chứng minh:

a) \(\widehat {ABI} = \widehat {ACI}\)và AI là tia phân giác của góc BAC.

b) AM = AN.

c) AI vuông góc với BC.

Xem đáp án » 12/07/2024 13,501

Câu 5:

Cho hình vuông ABCD. Trên cạnh các AD, DC lần lượt lấy các điểm E, F sao cho AE = DF. Gọi M, N lần lượt là trung điểm của EF, BF.

a) Chứng minh các tam giác ADF và BAE bằng nhau.

b) Chứng minh MN vuông góc AF.

Xem đáp án » 12/07/2024 12,583

Câu 6:

Cho tam giác ABC nhọn. Chứng minh rằng BC2 = AB2 + AC2 – 2AB.AC.cosA.

Xem đáp án » 13/07/2024 9,230

Câu 7:

Xác định hàm số bậc nhất y = ax + b (a ≠ 0) biết rằng đồ thị của hàm số này song song với đường thẳng y = 2x + 3 và cắt trục hoành tại điểm có hoành độ là 2.

Xem đáp án » 13/07/2024 7,198
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua