Câu hỏi:
12/07/2024 2,730
Một ô tô đi từ Hà Nội lúc 8 giờ sáng, dự kiến đến Hải Phòng vào lúc 10 giờ 30 phút. Nhưng mỗi giờ ô tô đã đi chậm hơn so với dự kiến là 10km nên mãi đến 11 giờ 20 phút xe mới tới Hải Phòng. Tính quãng đường Hà Nội – Hải Phòng.
Một ô tô đi từ Hà Nội lúc 8 giờ sáng, dự kiến đến Hải Phòng vào lúc 10 giờ 30 phút. Nhưng mỗi giờ ô tô đã đi chậm hơn so với dự kiến là 10km nên mãi đến 11 giờ 20 phút xe mới tới Hải Phòng. Tính quãng đường Hà Nội – Hải Phòng.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Gọi x (km) là quãng đường Hà Nội – Hải Phòng. Điều kiện: x > 0
Thời gian dự định đi:
10 giờ 30 phút – 8 giờ = 2 giờ 30 phút = \(\frac{5}{2}\) giờ
Thời gian thực tế đi:
11 giờ 20 phút – 8 giờ = 3 giờ 20 phút = \(\frac{{10}}{3}\) giờ.
Vận tốc dự định đi là \(x:\frac{5}{2} = \frac{{2x}}{5}\) (km/h).
Vận tốc thực tế đi là \(x:\frac{{10}}{3} = \frac{{3x}}{{10}}\) (km/h).
Vận tốc thực tế đi chậm hơn vận tộc dự định đi 10 km/h nên ta có phương trình:

Suy ra x = 100 (thỏa mãn)
Vậy quãng đường Hà Nội – Hải Phòng dài 100 km.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì tam giác ABC vuông tại A nên \(\widehat {ABC} + \widehat {ACB} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Vì AI là phân giác của góc BAC nên \(\widehat {{A_1}} = \frac{{\widehat {BAC}}}{2} = \frac{{90^\circ }}{2} = 45^\circ \)
Vì BI là phân giác của góc ABC nên \(\widehat {{B_1}} = \frac{{\widehat {ABC}}}{2}\)
Vì CI là phân giác của góc ACB nên \(\widehat {{C_1}} = \frac{{\widehat {ACB}}}{2}\)
Gọi giao điểm của BI và AC là M.
Vì \(\widehat {{I_1}}\) là góc ngoài của tam giác BIC
Nên \(\widehat {{I_1}} = \widehat {{B_1}} + \widehat {{C_1}} = \frac{{\widehat {ABC}}}{2} + \frac{{\widehat {ACB}}}{2} = \frac{{\widehat {ABC} + \widehat {ACB}}}{2} = \frac{{90^\circ }}{2} = 45^\circ \)
Xét DICM và DACI có
\(\widehat {{A_1}} = \widehat {{I_1}}\left( { = 45^\circ } \right)\);
\(\widehat {IC{\rm{A}}}\) là góc chung
Do đó (g.g)
Suy ra \(\frac{{IC}}{{AC}} = \frac{{CM}}{{CI}}\) (tỉ số đồng dạng)
Hay CI2 = CM . AC, mà IC = 6 nên CM . AC = 36
Suy ra \(CM = \frac{{36}}{{AC}}\).
Do BM là tia phân giác của \(\widehat {ABC}\) nên ta có
\(\frac{{CB}}{{AB}} = \frac{{CM}}{{MA}} \Leftrightarrow \frac{{BC}}{{BA + BC}} = \frac{{CM}}{{MA + CM}} \Leftrightarrow \frac{{BC}}{{5 + BC}} = \frac{{CM}}{{AC}}\)
Mà \(CM = \frac{{36}}{{AC}}\)
Suy ra \(\frac{{36}}{{A{C^2}}} = \frac{{BC}}{{BC + 5}} \Leftrightarrow \frac{{36}}{{B{C^2} - A{B^2}}} = \frac{{BC}}{{BC + 5}} \Leftrightarrow \frac{{36}}{{B{C^2} - 25}} = \frac{{BC}}{{BC + 5}}\)
\( \Leftrightarrow \frac{{36}}{{B{C^2} - 25}} = \frac{{BC\left( {BC - 5} \right)}}{{B{C^2} - 25}}\)
Suy ra BC(BC – 5) = 36
Hay BC2 – 5BC – 36 = 0
Suy ra BC = 9 (do BC > 0).
b) Kẻ CH ⊥ BI và CH cắt BA tại K.
Xét tam giác BCK có BH vừa là tia phân giác vừa là đường cao
Suy ra tam giác BCK cân tại B
Do đó BH là trung tuyến và BK = BC
Hay \[CH = HK = \frac{1}{2}CK\]
Đặt BC = x
Ta có AK = BK – AB = BC – AB = x – AB
Ta có: \(\widehat {ABM} = \widehat {HCM}\) (cùng phụ với \(\widehat {BKC}\))
Mà \(\widehat {ABM} = \frac{1}{2}\widehat {ABC}\) nên \(\widehat {HCM} = \frac{1}{2}\widehat {ABC}\)
Ta có \(\widehat {HCI} = \widehat {HCM} + \widehat {MCI} = \frac{1}{2}\widehat {ABC} + \frac{1}{2}\widehat {ACB} = \frac{1}{2}.90^\circ = 45^\circ \)
Xét tam giác ICH vuông ở H có
\(\widehat {HIC} + \widehat {HCI} = 90^\circ \) (trong một tam giác vuông, tổng hai góc nhọn bằng 90°)
Mà \(\widehat {HCI} = 45^\circ \) nên \(\widehat {HIC} = 45^\circ \)
Suy ra \(\widehat {HCI} = \widehat {HIC}\)
Do đó tam giác HIC vuông ở H, nên HI = HC
Xét tam giác ICH vuông ở H có
IC2 = HI2 + HC2 (định lí Pytago)
Hay 10 = 2HI2 (do \(IC = \sqrt {10} \))
Suy ra \[HI = HC = \sqrt 5 \]
Ta có \[BH = BI + IH = \sqrt 5 + \sqrt 5 = 2\sqrt 5 \];
\[CK = 2CH = 2\sqrt 5 \]
Xét tam giác BCH vuông ở H có
BC2 = HB2 + HC2 (định lí Pytago)
Hay BC2 = 20 + 5
Suy ra BC = 5.
Xét tam giác BCA vuông ở A có
BC2 = AB2 + AC2 (định lí Pytago)
Hay 52 = AB2 + AC2 = 25
Xét tam giác AKC vuông ở A có
KC2 = AK2 + AC2 (định lí Pytago)
⇔ 20 = (BC – AB)2 + AC2
⇔ 20 = (5 – AB)2 + AC2
⇔ 20 = 25 – 10AB + AB2 + AC2
⇔ 20 = 25 – 10AB + 25
⇔ AB = 3
Khi đó \(AC = \sqrt {{5^2} - {3^2}} = 4\)
Vậy AB = 3, AC = 4.
Lời giải
Nửa chu vi tam giác đó là
p = (13 + 14 + 15) : 2 = 21
Diện tích tam giác đó là

Vậy diện tích tam giác đó bằng 84.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.