Câu hỏi:
12/07/2024 5,848Cho tam giác ABC có \(\widehat A = 90^\circ \). Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC. Nối AF với BE.
a) Chứng minh AF = BE . cosC.
b) Biết BC =10 cm, sinC = 0,6. Tính diện tích tứ giác ABFE.
c) AF và BE cắt nhau tại O. Tính sin góc AOB.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Xét tam giác CEF vuông ở F có \(\cos C = \frac{{CF}}{{CE}}\)
Xét tam giác CEF và tam giác CBA có
\(\widehat C\) là góc chung;
\(\widehat {BAC} = \widehat {{\rm{EF}}C} = 90^\circ \)
Suy ra (g.g)
Do đó \(\frac{{CF}}{{CE}} = \frac{{CA}}{{CB}}\)
Xét tam giác AFC và tam giác BEC có
\(\widehat C\) là góc chung;
\(\frac{{CF}}{{CE}} = \frac{{CA}}{{CB}}\) (chứng minh trên)
Suy ra (g.g)
Do đó \(\frac{{CF}}{{CE}} = \frac{{FA}}{{BE}}\)
Mà cosC = \(\frac{{CF}}{{CE}}\)
Suy ra AF = BE . cosC.
b) Vì tam giác ABC vuông tại A
Suy ra AB = BC . sinC = 10 . 0,6 = 6.
Xét tam giác ABC vuông tại A, theo định lí Pytago có
BC2 = AB2 + AC2
Suy ra \(AC = \sqrt {B{C^2} - A{B^2}} = \sqrt {{{10}^2} - {6^2}} = 8\)
Mà E là trung điểm AC nên AE = EC = 4
Vì tam giác FEC vuông tại F
Suy ra FE = EC . sinC = 4 . 0,6 = 2,4
Xét tam giác FEC vuông tại F, theo định lí Pytago có
EC2 = FE2 + FC2
Suy ra \(FC = \sqrt {E{C^2} - F{{\rm{E}}^2}} = \sqrt {{4^2} - 2,{4^2}} = 3,2\)
Khi đó BF = BC – FC = 10 – 3,2 = 6,8
Ta có SABFE = SABE + SBFE
\( = \frac{1}{2}AB.AE + \frac{1}{2}BF.FE\)
\( = \frac{1}{2}.6.4 + \frac{1}{2}.6,8.2,4 = 20,16\left( {c{m^2}} \right)\)
c) Ta có \(\frac{{CF}}{{CE}} = \frac{{FA}}{{BE}} = \frac{{3,2}}{4}\)
Suy ra AF = 0,8BE
Vì tam giác ABE vuông tại A nên
BE2 = AB2 + AE2
Hay BE2 = 62 + 42
suy ra \(BE = \sqrt {52} \)
Ta có \[{S_{ABFE}} = \frac{1}{2}AF.BE.\sin \widehat {AOB}\]
\( \Leftrightarrow 20,16 = \frac{1}{2}.0,8.\sqrt {52} .\sqrt {52} .\sin \widehat {AOB}\)
\( \Leftrightarrow \sin \widehat {AOB} = \frac{{20,16}}{{20,8}} = \frac{{63}}{{65}}\) .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một tam giác có độ dài 3 cạnh là 13, 14, 15. Tính diện tích của tam giác đó.
Câu 2:
Tam giác ABC vuông tại A, gọi I là giao điểm của các đường phân giác.
a) Biết AB = 5, IC = 6. Tính BC.
b) Biết \(IB = \sqrt 5 ,IC = \sqrt {10} \).Tính độ dài AB, AC.
Câu 3:
Cho tam giác ABC có AC = 7, AB = 5 và \(\cos A = \frac{3}{5}\). Tính BC, S, ha, R.
Câu 4:
Cho tam giác ABC vuông tại A, đường cao AH.
a) AB = 6 cm, BC = 10 cm. Tính AC, BH, HC, AH.
b) BH = 1 cm, AH = 2 cm. Tính HC, AC, BA, BC.
c) BH = 4 cm, HC = 9 cm. Tính BC, AB, AH, AC.
d) BH = 9 cm, AC = 20 cm. Tính HC, AH, AB, BC.
Câu 5:
Chứng minh rằng trong tam giác ABC ta có các hệ thức:
sin A = sinB.cosC + sinC.cosB.
Câu 6:
Cho tam giác ABC. Chứng minh rằng \(1 + \frac{r}{R} = \cos A + \cos B + \cos C\).
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức cơ bản, nâng cao có lời giải (P1)
về câu hỏi!