Câu hỏi:

12/07/2024 1,187

Tìm các số tự nhiên x biết

a) x thuộc B(8) và x ≥ 30.

b) x chia hết cho 9 và x < 40.

c) x chia hết cho 6, x chia hết cho 21 và x < 200.

d) x chia hết cho 5, x chia hết 7, x chia hết cho 8 và ≥ 500.

e) 150 chia hết cho x , 120 chia hết cho x và x lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) x thuộc B(8) và x ≥ 30

Ta có: x B(8) = {0; 8; 16; 24; 32; 40; 48;...}

Mà x ≥ 30

Suy ra x = {32; 40; 48; ...}

b) x chia hết cho 9 và x < 40

Ta có x 9

Nên x B(9) = {0; 9; 18; 27; 36; 45; 54;...}

Mà x < 40

Suy ra x = {0; 9; 18; 27; 36}

c) x chia hết cho 6 , x chia hết cho 21 và x < 200

Do x chia hết cho 6, 21 nên x BC(6; 21)

Ta có 6 = 2 x 3, 21 = 3 x 7 

Suy ra BCNN(6; 21) = 2 x 3 x 7 = 42

Do đó BC(6; 21) = {0; 42; 84; 126; 168; 210; 252; ...}

Mà x < 200

Suy ra x = {0; 42; 84; 126; 168}

d) x chia hết cho 5, x chia hết 7, x chia hết cho 8 và ≥ 500

Do x chia hết cho 5, 7, 8 nên x BC(5; 7; 8)

Ta có: 5 = 5; 7 = 7; 8 = 23 

Suy ra BCNN(5; 7; 8)= 23 x 5 x 7 = 280

Do đó BC(5; 7; 8) = {0; 280; 560; 840; 1120;...}

Mà x ≥ 500

Suy ra x={560; 840; 1120;...}

e) 150 chia hết cho x , 120 chia hết cho x và x lớn nhất

Ta có: 150 x; 120 x nên x ƯC(150; 120)

Phân tích: 150 = 2 x 3 x 52 ; 120 = 23 x 3 x 5

Suy ra ƯC(150; 120) = {2; 3; 5; 6; 10; 15; 30}

Mà x lớn nhất suy ra x = 30

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tam giác ABC vuông tại A, gọi I là giao điểm của các đường phân giác (ảnh 1)

a) Vì tam giác ABC vuông tại A nên \(\widehat {ABC} + \widehat {ACB} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

Vì AI là phân giác của góc BAC nên \(\widehat {{A_1}} = \frac{{\widehat {BAC}}}{2} = \frac{{90^\circ }}{2} = 45^\circ \)

Vì BI là phân giác của góc ABC nên \(\widehat {{B_1}} = \frac{{\widehat {ABC}}}{2}\)

Vì CI là phân giác của góc ACB nên \(\widehat {{C_1}} = \frac{{\widehat {ACB}}}{2}\)

Gọi giao điểm của BI và AC là M.

\(\widehat {{I_1}}\) là góc ngoài của tam giác BIC

Nên \(\widehat {{I_1}} = \widehat {{B_1}} + \widehat {{C_1}} = \frac{{\widehat {ABC}}}{2} + \frac{{\widehat {ACB}}}{2} = \frac{{\widehat {ABC} + \widehat {ACB}}}{2} = \frac{{90^\circ }}{2} = 45^\circ \)

Xét DICM và DACI có

\(\widehat {{A_1}} = \widehat {{I_1}}\left( { = 45^\circ } \right)\);

 \(\widehat {IC{\rm{A}}}\) là góc chung

Do đó  (g.g)

Suy ra \(\frac{{IC}}{{AC}} = \frac{{CM}}{{CI}}\) (tỉ số đồng dạng)

Hay CI2 = CM . AC, mà IC = 6 nên CM . AC = 36

Suy ra \(CM = \frac{{36}}{{AC}}\).

Do BM là tia phân giác của \(\widehat {ABC}\) nên ta có

\(\frac{{CB}}{{AB}} = \frac{{CM}}{{MA}} \Leftrightarrow \frac{{BC}}{{BA + BC}} = \frac{{CM}}{{MA + CM}} \Leftrightarrow \frac{{BC}}{{5 + BC}} = \frac{{CM}}{{AC}}\)

\(CM = \frac{{36}}{{AC}}\)

Suy ra \(\frac{{36}}{{A{C^2}}} = \frac{{BC}}{{BC + 5}} \Leftrightarrow \frac{{36}}{{B{C^2} - A{B^2}}} = \frac{{BC}}{{BC + 5}} \Leftrightarrow \frac{{36}}{{B{C^2} - 25}} = \frac{{BC}}{{BC + 5}}\)

\( \Leftrightarrow \frac{{36}}{{B{C^2} - 25}} = \frac{{BC\left( {BC - 5} \right)}}{{B{C^2} - 25}}\)

Suy ra BC(BC – 5) = 36

Hay BC2 – 5BC – 36 = 0

Suy ra BC = 9 (do BC > 0).

b) Kẻ CH BI và CH cắt BA tại K.

Xét tam giác BCK có BH vừa là tia phân giác vừa là đường cao

Suy ra tam giác BCK cân tại B

Do đó BH là trung tuyếnBK = BC

Hay \[CH = HK = \frac{1}{2}CK\]

Đặt BC = x

Ta có AK = BK – AB = BC – AB = x – AB

Ta có: \(\widehat {ABM} = \widehat {HCM}\) (cùng phụ với \(\widehat {BKC}\))

\(\widehat {ABM} = \frac{1}{2}\widehat {ABC}\) nên \(\widehat {HCM} = \frac{1}{2}\widehat {ABC}\)

Ta có \(\widehat {HCI} = \widehat {HCM} + \widehat {MCI} = \frac{1}{2}\widehat {ABC} + \frac{1}{2}\widehat {ACB} = \frac{1}{2}.90^\circ = 45^\circ \)

Xét tam giác ICH vuông ở H có

\(\widehat {HIC} + \widehat {HCI} = 90^\circ \) (trong một tam giác vuông, tổng hai góc nhọn bằng 90°)

\(\widehat {HCI} = 45^\circ \) nên \(\widehat {HIC} = 45^\circ \)

Suy ra \(\widehat {HCI} = \widehat {HIC}\)

Do đó tam giác HIC vuông ở H, nên HI = HC

Xét tam giác ICH vuông ở H có

IC2 = HI2 + HC2 (định lí Pytago)

Hay 10 = 2HI2 (do \(IC = \sqrt {10} \))

Suy ra \[HI = HC = \sqrt 5 \]

Ta có \[BH = BI + IH = \sqrt 5 + \sqrt 5 = 2\sqrt 5 \];

          \[CK = 2CH = 2\sqrt 5 \]

Xét tam giác BCH vuông ở H có

BC2 = HB2 + HC2 (định lí Pytago)

Hay BC2 = 20 + 5

Suy ra BC = 5.

Xét tam giác BCA vuông ở A có

BC2 = AB2 + AC2 (định lí Pytago)

Hay 52 = AB2 + AC2 = 25

Xét tam giác AKC vuông ở A có

KC2 = AK2 + AC2 (định lí Pytago)

20 = (BC – AB)2 + AC2

20 = (5 – AB)2 + AC2

20 = 25 – 10AB + AB2 + AC2

20 = 25 – 10AB + 25

AB = 3

Khi đó \(AC = \sqrt {{5^2} - {3^2}} = 4\)

Vậy AB = 3, AC = 4.

Lời giải

Nửa chu vi tam giác đó là

p = (13 + 14 + 15) : 2 = 21

Diện tích tam giác đó là

Một tam giác có độ dài 3 cạnh là 13, 14, 15. Tính diện tích của tam giác đó (ảnh 1)

Vậy diện tích tam giác đó bằng 84.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay