Câu hỏi:
12/07/2024 941Tìm các số tự nhiên x biết
a) x thuộc B(8) và x ≥ 30.
b) x chia hết cho 9 và x < 40.
c) x chia hết cho 6, x chia hết cho 21 và x < 200.
d) x chia hết cho 5, x chia hết 7, x chia hết cho 8 và ≥ 500.
e) 150 chia hết cho x , 120 chia hết cho x và x lớn nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) x thuộc B(8) và x ≥ 30
Ta có: x ∈ B(8) = {0; 8; 16; 24; 32; 40; 48;...}
Mà x ≥ 30
Suy ra x = {32; 40; 48; ...}
b) x chia hết cho 9 và x < 40
Ta có x ⋮ 9
Nên x ∈ B(9) = {0; 9; 18; 27; 36; 45; 54;...}
Mà x < 40
Suy ra x = {0; 9; 18; 27; 36}
c) x chia hết cho 6 , x chia hết cho 21 và x < 200
Do x chia hết cho 6, 21 nên x ∈ BC(6; 21)
Ta có 6 = 2 x 3, 21 = 3 x 7
Suy ra BCNN(6; 21) = 2 x 3 x 7 = 42
Do đó BC(6; 21) = {0; 42; 84; 126; 168; 210; 252; ...}
Mà x < 200
Suy ra x = {0; 42; 84; 126; 168}
d) x chia hết cho 5, x chia hết 7, x chia hết cho 8 và ≥ 500
Do x chia hết cho 5, 7, 8 nên x ∈ BC(5; 7; 8)
Ta có: 5 = 5; 7 = 7; 8 = 23
Suy ra BCNN(5; 7; 8)= 23 x 5 x 7 = 280
Do đó BC(5; 7; 8) = {0; 280; 560; 840; 1120;...}
Mà x ≥ 500
Suy ra x={560; 840; 1120;...}
e) 150 chia hết cho x , 120 chia hết cho x và x lớn nhất
Ta có: 150 ⋮ x; 120 ⋮ x nên x ∈ ƯC(150; 120)
Phân tích: 150 = 2 x 3 x 52 ; 120 = 23 x 3 x 5
Suy ra ƯC(150; 120) = {2; 3; 5; 6; 10; 15; 30}
Mà x lớn nhất suy ra x = 30
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có \(\widehat A = 90^\circ \). Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC. Nối AF với BE.
a) Chứng minh AF = BE . cosC.
b) Biết BC =10 cm, sinC = 0,6. Tính diện tích tứ giác ABFE.
c) AF và BE cắt nhau tại O. Tính sin góc AOB.
Câu 2:
Tam giác ABC vuông tại A, gọi I là giao điểm của các đường phân giác.
a) Biết AB = 5, IC = 6. Tính BC.
b) Biết \(IB = \sqrt 5 ,IC = \sqrt {10} \).Tính độ dài AB, AC.
Câu 3:
Một tam giác có độ dài 3 cạnh là 13, 14, 15. Tính diện tích của tam giác đó.
Câu 4:
Cho tam giác ABC có AC = 7, AB = 5 và \(\cos A = \frac{3}{5}\). Tính BC, S, ha, R.
Câu 5:
Cho tam giác ABC vuông tại A, đường cao AH.
a) AB = 6 cm, BC = 10 cm. Tính AC, BH, HC, AH.
b) BH = 1 cm, AH = 2 cm. Tính HC, AC, BA, BC.
c) BH = 4 cm, HC = 9 cm. Tính BC, AB, AH, AC.
d) BH = 9 cm, AC = 20 cm. Tính HC, AH, AB, BC.
Câu 6:
Chứng minh rằng trong tam giác ABC ta có các hệ thức:
sin A = sinB.cosC + sinC.cosB.
Câu 7:
Cho tam giác ABC. Chứng minh rằng \(1 + \frac{r}{R} = \cos A + \cos B + \cos C\).
về câu hỏi!