Câu hỏi:
26/04/2023 201Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có
Đặt sin 2x = t (với t ∈ [– 1; 1])
Suy ta 3t2 – 6t – 4 = m
Xét sự biến thiên hàm số y = f(t) = 3t2 – 6t – 4 trong [– 1; 1] có
y’ = 6t – 6
y’ = 0 ⟺ 6t – 6 = 0 ⟺ t = 1
Ta có f(1) = – 7 và f(– 1) = 5
Suy ra phương trình có nghiệm khi – 7 ≤ m ≤ 5
Do đó các giá trị nguyên của m là {– 7; – 6; – 5; – 4; – 3; – 2; – 1; 0; 1; 2; 3; 4; 5}
Vậy ta chọn đáp án A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Nửa chu vi tam giác đó là
p = (13 + 14 + 15) : 2 = 21
Diện tích tam giác đó là
Vậy diện tích tam giác đó bằng 84.
Lời giải
a) Vì tam giác ABC vuông tại A nên \(\widehat {ABC} + \widehat {ACB} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Vì AI là phân giác của góc BAC nên \(\widehat {{A_1}} = \frac{{\widehat {BAC}}}{2} = \frac{{90^\circ }}{2} = 45^\circ \)
Vì BI là phân giác của góc ABC nên \(\widehat {{B_1}} = \frac{{\widehat {ABC}}}{2}\)
Vì CI là phân giác của góc ACB nên \(\widehat {{C_1}} = \frac{{\widehat {ACB}}}{2}\)
Gọi giao điểm của BI và AC là M.
Vì \(\widehat {{I_1}}\) là góc ngoài của tam giác BIC
Nên \(\widehat {{I_1}} = \widehat {{B_1}} + \widehat {{C_1}} = \frac{{\widehat {ABC}}}{2} + \frac{{\widehat {ACB}}}{2} = \frac{{\widehat {ABC} + \widehat {ACB}}}{2} = \frac{{90^\circ }}{2} = 45^\circ \)
Xét DICM và DACI có
\(\widehat {{A_1}} = \widehat {{I_1}}\left( { = 45^\circ } \right)\);
\(\widehat {IC{\rm{A}}}\) là góc chung
Do đó (g.g)
Suy ra \(\frac{{IC}}{{AC}} = \frac{{CM}}{{CI}}\) (tỉ số đồng dạng)
Hay CI2 = CM . AC, mà IC = 6 nên CM . AC = 36
Suy ra \(CM = \frac{{36}}{{AC}}\).
Do BM là tia phân giác của \(\widehat {ABC}\) nên ta có
\(\frac{{CB}}{{AB}} = \frac{{CM}}{{MA}} \Leftrightarrow \frac{{BC}}{{BA + BC}} = \frac{{CM}}{{MA + CM}} \Leftrightarrow \frac{{BC}}{{5 + BC}} = \frac{{CM}}{{AC}}\)
Mà \(CM = \frac{{36}}{{AC}}\)
Suy ra \(\frac{{36}}{{A{C^2}}} = \frac{{BC}}{{BC + 5}} \Leftrightarrow \frac{{36}}{{B{C^2} - A{B^2}}} = \frac{{BC}}{{BC + 5}} \Leftrightarrow \frac{{36}}{{B{C^2} - 25}} = \frac{{BC}}{{BC + 5}}\)
\( \Leftrightarrow \frac{{36}}{{B{C^2} - 25}} = \frac{{BC\left( {BC - 5} \right)}}{{B{C^2} - 25}}\)
Suy ra BC(BC – 5) = 36
Hay BC2 – 5BC – 36 = 0
Suy ra BC = 9 (do BC > 0).
b) Kẻ CH ⊥ BI và CH cắt BA tại K.
Xét tam giác BCK có BH vừa là tia phân giác vừa là đường cao
Suy ra tam giác BCK cân tại B
Do đó BH là trung tuyến và BK = BC
Hay \[CH = HK = \frac{1}{2}CK\]
Đặt BC = x
Ta có AK = BK – AB = BC – AB = x – AB
Ta có: \(\widehat {ABM} = \widehat {HCM}\) (cùng phụ với \(\widehat {BKC}\))
Mà \(\widehat {ABM} = \frac{1}{2}\widehat {ABC}\) nên \(\widehat {HCM} = \frac{1}{2}\widehat {ABC}\)
Ta có \(\widehat {HCI} = \widehat {HCM} + \widehat {MCI} = \frac{1}{2}\widehat {ABC} + \frac{1}{2}\widehat {ACB} = \frac{1}{2}.90^\circ = 45^\circ \)
Xét tam giác ICH vuông ở H có
\(\widehat {HIC} + \widehat {HCI} = 90^\circ \) (trong một tam giác vuông, tổng hai góc nhọn bằng 90°)
Mà \(\widehat {HCI} = 45^\circ \) nên \(\widehat {HIC} = 45^\circ \)
Suy ra \(\widehat {HCI} = \widehat {HIC}\)
Do đó tam giác HIC vuông ở H, nên HI = HC
Xét tam giác ICH vuông ở H có
IC2 = HI2 + HC2 (định lí Pytago)
Hay 10 = 2HI2 (do \(IC = \sqrt {10} \))
Suy ra \[HI = HC = \sqrt 5 \]
Ta có \[BH = BI + IH = \sqrt 5 + \sqrt 5 = 2\sqrt 5 \];
\[CK = 2CH = 2\sqrt 5 \]
Xét tam giác BCH vuông ở H có
BC2 = HB2 + HC2 (định lí Pytago)
Hay BC2 = 20 + 5
Suy ra BC = 5.
Xét tam giác BCA vuông ở A có
BC2 = AB2 + AC2 (định lí Pytago)
Hay 52 = AB2 + AC2 = 25
Xét tam giác AKC vuông ở A có
KC2 = AK2 + AC2 (định lí Pytago)
⇔ 20 = (BC – AB)2 + AC2
⇔ 20 = (5 – AB)2 + AC2
⇔ 20 = 25 – 10AB + AB2 + AC2
⇔ 20 = 25 – 10AB + 25
⇔ AB = 3
Khi đó \(AC = \sqrt {{5^2} - {3^2}} = 4\)
Vậy AB = 3, AC = 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận