Câu hỏi:

26/04/2023 748

Cho tam giác ABC, có AB = AC. AM là tia phân giác của góc A

a) Chứng minh DAMB = DAMC.

b) Chứng minh M là trung điểm của BC.

c) Cho biết Ax là tia phân giác góc ngoài của đỉnh A. Chứng minh Ax // BC.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC, có AB = AC. AM là tia phân giác của góc A a) Chứng minh (ảnh 1)
 

a) Vì AM là tia phân giác của góc BAC

Nên \(\widehat {BAM} = \widehat {CAM}\)

Xét DAMB và DAMC có

AB = AC (giả thiết)

\(\widehat {BAM} = \widehat {CAM}\) (chứng minh trên)

AM là cạnh chung

Suy ra DAMB = DAMC (c.g.c)

b) Vì DAMB = DAMC (chứng minh câu a)

Nên MB = MC (hai cạnh tương ứng)

Suy ra M là trung điểm của BC

c) Vì DAMB = DAMC (chứng minh câu a)

Nên \(\widehat {BMA} = \widehat {CMA}\) (hai góc tương ứng)

\(\widehat {BMA} + \widehat {CMA} = 180^\circ \) (hai góc kề bù)

Suy ra \(\widehat {BMA} = \widehat {CMA} = 90^\circ \)

Hay AM BC

Xét tam giác ABC có Ax là tia phân giác góc ngoài của đỉnh A

AM là phân giác góc trong tại đỉnh A

Suy ra AM Ax

Mà AM BC

Do đó Ax // BC (quan hệ từ vuông góc đến song song)

Vậy Ax // BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có \(\widehat A = 90^\circ \). Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC. Nối AF với BE.

a) Chứng minh AF = BE . cosC.

b) Biết BC =10 cm, sinC = 0,6. Tính diện tích tứ giác ABFE.

c) AF và BE cắt nhau tại O. Tính sin góc AOB.

Xem đáp án » 12/07/2024 5,545

Câu 2:

Tam giác ABC vuông tại A, gọi I là giao điểm của các đường phân giác.

a) Biết AB = 5, IC = 6. Tính BC.

b) Biết \(IB = \sqrt 5 ,IC = \sqrt {10} \).Tính độ dài AB, AC.

Xem đáp án » 12/07/2024 5,170

Câu 3:

Một tam giác có độ dài 3 cạnh là 13, 14, 15. Tính diện tích của tam giác đó.

Xem đáp án » 12/07/2024 5,041

Câu 4:

Cho tam giác ABC có AC = 7, AB = 5 và \(\cos A = \frac{3}{5}\). Tính BC, S, ha, R.

Xem đáp án » 12/07/2024 4,473

Câu 5:

Cho tam giác ABC vuông tại A, đường cao AH.

a) AB = 6 cm, BC = 10 cm. Tính AC, BH, HC, AH.

b) BH = 1 cm, AH = 2 cm. Tính HC, AC, BA, BC.

c) BH = 4 cm, HC = 9 cm. Tính BC, AB, AH, AC.

d) BH = 9 cm, AC = 20 cm. Tính HC, AH, AB, BC.

Xem đáp án » 12/07/2024 4,382

Câu 6:

Chứng minh rằng trong tam giác ABC ta có các hệ thức:

sin A = sinB.cosC + sinC.cosB.

Xem đáp án » 12/07/2024 3,109

Câu 7:

Cho tam giác ABC. Chứng minh rằng \(1 + \frac{r}{R} = \cos A + \cos B + \cos C\).

Xem đáp án » 12/07/2024 2,716

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store