Câu hỏi:

11/07/2024 10,376

Tính chiều cao CH của tháp ở bên kia sông biết AB = 25 m, \(\widehat {HAC} = 32^\circ \), \(\widehat {HBC} = 43^\circ \), và ba điểm A, B, H thẳng hàng. (kết quả làm tròn đến chữ số thập phân thứ nhất).

Tính chiều cao CH của tháp ở bên kia sông biết AB = 25 m, góc HAC = 32 độ (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét tam giác CAH vuông tại H có:

\(\tan \widehat {HAC} = \tan 32^\circ = \frac{{CH}}{{HA}} \Rightarrow HA = \frac{{CH}}{{\tan 32^\circ }}\)

Xét tam giác CBH vuông tại H có:

\(\tan \widehat {HBC} = \tan 43^\circ = \frac{{CH}}{{BH}} \Rightarrow BH = \frac{{CH}}{{\tan 43^\circ }}\)

Ta có:

\(\begin{array}{l}AB = AH - BH\\ \Rightarrow CH\left( {\frac{1}{{\tan 32^\circ }} - \frac{1}{{\tan 43^\circ }}} \right) = 25 \Rightarrow CH = \frac{{25}}{{\left( {\frac{1}{{\tan 32^\circ }} - \frac{1}{{\tan 43^\circ }}} \right)}} \approx 47,4\,\,(m)\end{array}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho ∆ABC vuông tại A (AB < AC), E là trung điểm của BC. Kẻ EF vuông góc với (ảnh 1)

a)

EF vuông góc với AB do đó \(\widehat {AFE} = 90^\circ \)

ED vuông góc với AC do đó \(\widehat {ADE} = 90^\circ \)

Tứ giác ADEF có:

\(\widehat {FAD} = 90^\circ \)

\(\widehat {AFE} = 90^\circ \)

\(\widehat {ADE} = 90^\circ \)

Do đó, ADEF là hình chữ nhật

b)

K đối xứng với E qua D

Do đó D là trung điểm của EK

ED vuông góc với AC, AB vuông góc với AC

Do đó, ED song song với AB

Tam giác ABC có:

E là trung điểm của BC

ED song song với AB

Do đó, D là trung điểm của AC

Tứ giác AECK có:

D là trung điểm của AC, EK

Do đó, AECK là hình bình hành mà EK vuông góc với AC

Do đó, AECK là hình thoi

c)

ADEF là hình chữ nhật, DF và AE giao nhau tại O

Nên O là trung điểm của DF, AE và DF = AE

AECK là hình thoi nên AK = EC, AK song song với EC

AK = EC, BE = EC nên AK = BE

Tứ giác ABEK có:

AK = BE

AK song song với BE

Do đó, ABEK là hình bình hành

Do đó, AE, BK cắt nhau tại trung điểm mỗi đường

Mà O là trung điểm của AE, O là trung điểm của BK

Do đó, B, O, K thẳng hàng

d)

Tam giác AME vuông tại M có MO là đường trung tuyến

\(MO = \frac{1}{2}AE = \frac{1}{2}DF\)

Tam giác FMD có:

\(MO = \frac{1}{2}DF\)

MO là đường trung tuyến

Do đó, FMD vuông tại M

\( \Rightarrow \widehat {DMF} = 90^\circ \)

Lời giải

\(\sin A = \cos B + \cos C = 2cos\frac{{B + C}}{2}.cos\frac{{B - C}}{2}\)

\( = 2\sin \frac{A}{2}.cos\frac{{B - C}}{2}\)

\( \Leftrightarrow 2\sin \frac{A}{2}.cos\frac{A}{2} = 2\sin \frac{A}{2}.cos\frac{{B - C}}{2}\)

\( \Leftrightarrow cos\frac{A}{2} = cos\frac{{B - C}}{2} \Rightarrow \frac{A}{2} = \frac{{B - C}}{2}\)

\(\begin{array}{l} \Rightarrow \widehat B = \widehat A + \widehat C\\ \Rightarrow 2\widehat B = 180^\circ \Rightarrow \widehat B = 90^\circ \end{array}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay