Câu hỏi:
11/07/2024 4,989
Cho các hàm số y = x + 1 có đồ thị là d1 và y = – x + 3 có đồ thị là d2.
a) Vẽ đồ thị hai hàm số trên trên cùng một mặt phẳng tọa độ.
b) Gọi A, B lần lượt là giao điểm của d1, d2 với trục hoành và C là giao điểm của d1 và d2. Hãy tìm tọa độ các điểm A, B và C.
Cho các hàm số y = x + 1 có đồ thị là d1 và y = – x + 3 có đồ thị là d2.
a) Vẽ đồ thị hai hàm số trên trên cùng một mặt phẳng tọa độ.
b) Gọi A, B lần lượt là giao điểm của d1, d2 với trục hoành và C là giao điểm của d1 và d2. Hãy tìm tọa độ các điểm A, B và C.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
a)
Đồ thị hàm số y = x + 1 là đường thẳng d1 đi qua hai điểm (–1; 0) và (0; 1)
Đồ thị hàm số y = –x + 3 là đường thẳng d2 đi qua hai điểm (3; 0) và (0; 3)
Vẽ hai đường thẳng d1 và d2 trên mặt phẳng Oxy như hình vẽ:

b)
Gọi A(xA; yA), B(xB; yB) lần lượt là giao điểm của d1, d2 với trục hoành và C(xC; yC) là giao điểm của d1 và d2.
Ta có:
yA = 0 ⇒ xA + 1 = 0 ⇒ xA = –1 ⇒ A(–1; 0)
yB = 0 ⇒ –xB + 3 = 0 ⇒ xB = 3 ⇒ B(3; 0)
xC là nghiệm của phương trình hoành độ giao điểm:
x + 1 = –x + 3
⇔ 2x = 2
⇔ x = 1
Do đó, xC = 1 , yC = 2 ⇒ C(1; 2).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a)
EF vuông góc với AB do đó \(\widehat {AFE} = 90^\circ \)
ED vuông góc với AC do đó \(\widehat {ADE} = 90^\circ \)
Tứ giác ADEF có:
\(\widehat {FAD} = 90^\circ \)
\(\widehat {AFE} = 90^\circ \)
\(\widehat {ADE} = 90^\circ \)
Do đó, ADEF là hình chữ nhật
b)
K đối xứng với E qua D
Do đó D là trung điểm của EK
ED vuông góc với AC, AB vuông góc với AC
Do đó, ED song song với AB
Tam giác ABC có:
E là trung điểm của BC
ED song song với AB
Do đó, D là trung điểm của AC
Tứ giác AECK có:
D là trung điểm của AC, EK
Do đó, AECK là hình bình hành mà EK vuông góc với AC
Do đó, AECK là hình thoi
c)
ADEF là hình chữ nhật, DF và AE giao nhau tại O
Nên O là trung điểm của DF, AE và DF = AE
AECK là hình thoi nên AK = EC, AK song song với EC
AK = EC, BE = EC nên AK = BE
Tứ giác ABEK có:
AK = BE
AK song song với BE
Do đó, ABEK là hình bình hành
Do đó, AE, BK cắt nhau tại trung điểm mỗi đường
Mà O là trung điểm của AE, O là trung điểm của BK
Do đó, B, O, K thẳng hàng
d)
Tam giác AME vuông tại M có MO là đường trung tuyến
\(MO = \frac{1}{2}AE = \frac{1}{2}DF\)
Tam giác FMD có:
\(MO = \frac{1}{2}DF\)
MO là đường trung tuyến
Do đó, FMD vuông tại M
\( \Rightarrow \widehat {DMF} = 90^\circ \)
Lời giải
\(\sin A = \cos B + \cos C = 2cos\frac{{B + C}}{2}.cos\frac{{B - C}}{2}\)
\( = 2\sin \frac{A}{2}.cos\frac{{B - C}}{2}\)
\( \Leftrightarrow 2\sin \frac{A}{2}.cos\frac{A}{2} = 2\sin \frac{A}{2}.cos\frac{{B - C}}{2}\)
\( \Leftrightarrow cos\frac{A}{2} = cos\frac{{B - C}}{2} \Rightarrow \frac{A}{2} = \frac{{B - C}}{2}\)
\(\begin{array}{l} \Rightarrow \widehat B = \widehat A + \widehat C\\ \Rightarrow 2\widehat B = 180^\circ \Rightarrow \widehat B = 90^\circ \end{array}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.