Câu hỏi:
13/07/2024 1,521Cho hình chữ nhật ABCD. Vẽ điểm E đối xứng với B qua điểm C; vẽ F đối xứng với điểm D qua C.
a) Chứng minh tứ giác BDEF là hình thoi.
b) Chứng minh AC = DE.
c) Gọi H là trung điểm của CD, K là trung điểm của EF. Chứng minh HK // AF.
d) Biết diện tích tam giác AEF bằng 30 cm2. Tính diện tích hình chữ nhật ABCD?Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
a) Xét tứ giác BDEF có:
C là trung điểm BF (E điểm đối xứng của B qua C)
C là trung điểm DF (F điểm đối xứng của D qua C)
Do đó tứ giác BDEF là hình bình hành
Mặc khác ABCD là hình chữ nhật nên BE ⊥ DF tại C
Vậy tứ giá BDEF là hình thoi.
b) Ta có: ABCD là hình chữ nhật có AC = BD;
BDEF là hình thoi (câu a) có BD = DE
Do đó AC = DE.
c) Ta có: ABCD là hình chữ nhật có AD = BC;
Mà BC = CE (E điểm đối xúng B qua C).
Do đó AD = CE.
Xét tứ giác ADEC có:
AC = DE (câu b)
AD = CE (cmt)
Do đó ADEC là hình hình hành.
Mà H là trung điểm cua CD nên H cũng là trung điểm của AE.
Xét ∆AEF có:
H là trng điểm của AE (cmt);
K là trung điểm của EF
⇒ HK là đường trung bình của ∆AEF nên HK // AF
d) Ta có: S∆AEF = S∆AHF + S∆HEF
\( \Leftrightarrow 30 = \frac{1}{2}AD\,.\,HF + \frac{1}{2}CE\,.\,HF\)
\( \Leftrightarrow \frac{1}{2}HF\left( {AD + CE} \right) = 30\)
\( \Leftrightarrow \frac{1}{2}.\frac{3}{2}CD\,.\,\left( {AD + AD} \right) = 30\)
\( \Leftrightarrow \frac{3}{2}CD\,.\,AD = 30\)
\[ \Leftrightarrow \frac{3}{2}\,.\,{S_{ABCD}} = 30\]
\( \Rightarrow {S_{ABCD}} = 30\,.\,\frac{2}{3} = 60\) (cm2).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có :
DI vuông CD (gt) Þ \(\widehat {IDC} = 90^\circ \)
CK vuông KI (gt) Þ \(\widehat {IKC} = 90^\circ \)
\( \Rightarrow \widehat {IDC} = \widehat {IKC} = 90^\circ \)
Mà 2 góc này ở 2 đỉnh kề nhau cùng nhìn cạnh CI
Suy ra CDIK là tứ giác nội tiếp.
b) Ta có:
\(\widehat {HCD} = \widehat {ABC}\) (cùng phụ góc \(\widehat {KCB}\))
Xét ∆HCD và ∆ABC có:
\(\widehat {HCD} = \widehat {ABC}\) (cmt )
\(\widehat {HDC} = \widehat {ACB} = 90^\circ \)
Suy ra ∆ABC ᔕ ∆HCD (g.g)
\( \Rightarrow \frac{{BC}}{{DC}} = \frac{{AC}}{{HD}}\) (2 cạnh tương ứng tỉ lệ )
Mà BD là đường phân giác của \(\widehat {ABC}\) (gt)
\( \Rightarrow \frac{{AB}}{{AD}} = \frac{{AC}}{{HD}}\)
Suy ra AD.AC = DH.AB (đpcm)
c) Gọi giao điểm của BN với AD là F'.
Ta có: AC là tiếp tuyến của (I;ID) nên \(\widehat {CDM} = \widehat {CBD} = \widehat {ABD}\)
\( \Rightarrow \widehat {MDB} = \widehat {CDB} - \widehat {CDM} = \widehat {CDB} - \widehat {ABD} = \widehat {CAB}\)
Mà \(\widehat {MDB} = \widehat {MNB} = \widehat {ANF'} \Rightarrow \widehat {ANF'} = \widehat {CAB}\)
Từ đó ∆F'AN ᔕ ∆F'BA (g.g)
\( \Rightarrow \frac{{F'A}}{{F'N}} = \frac{{F'B}}{{F'A}} \Rightarrow F'{A^2} = F'B\,.\,F'N\)
Mặt khác, vì F'D là tiếp tuyến của (I, ID) nên F'D2 = F'B.F'N
Þ F'A = F'D Þ F' ≡ F.
Từ đó ta có đpcm.
Lời giải
Số cách sắp xếp học sinh ba khối 10, 11 và 12 là: 3!;
Số cách sắp xếp các học sinh giỏi khối 12 là: 4!;
Số cách sắp xếp các học sinh giỏi khối 11 là: 5!;
Số cách sắp xếp các học sinh giỏi khối 10 là: 6!;
Vậy số cách sắp xếp 15 học sinh thành hàng ngang để đón đại biểu là: 3!.4!.5!.6!
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận