Câu hỏi:
13/07/2024 1,635
Cho hình chữ nhật ABCD. Vẽ điểm E đối xứng với B qua điểm C; vẽ F đối xứng với điểm D qua C.
a) Chứng minh tứ giác BDEF là hình thoi.
b) Chứng minh AC = DE.
c) Gọi H là trung điểm của CD, K là trung điểm của EF. Chứng minh HK // AF.
d) Biết diện tích tam giác AEF bằng 30 cm2. Tính diện tích hình chữ nhật ABCD?
Cho hình chữ nhật ABCD. Vẽ điểm E đối xứng với B qua điểm C; vẽ F đối xứng với điểm D qua C.
a) Chứng minh tứ giác BDEF là hình thoi.
b) Chứng minh AC = DE.
c) Gọi H là trung điểm của CD, K là trung điểm của EF. Chứng minh HK // AF.
d) Biết diện tích tam giác AEF bằng 30 cm2. Tính diện tích hình chữ nhật ABCD?Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

a) Xét tứ giác BDEF có:
C là trung điểm BF (E điểm đối xứng của B qua C)
C là trung điểm DF (F điểm đối xứng của D qua C)
Do đó tứ giác BDEF là hình bình hành
Mặc khác ABCD là hình chữ nhật nên BE ⊥ DF tại C
Vậy tứ giá BDEF là hình thoi.
b) Ta có: ABCD là hình chữ nhật có AC = BD;
BDEF là hình thoi (câu a) có BD = DE
Do đó AC = DE.
c) Ta có: ABCD là hình chữ nhật có AD = BC;
Mà BC = CE (E điểm đối xúng B qua C).
Do đó AD = CE.
Xét tứ giác ADEC có:
AC = DE (câu b)
AD = CE (cmt)
Do đó ADEC là hình hình hành.
Mà H là trung điểm cua CD nên H cũng là trung điểm của AE.
Xét ∆AEF có:
H là trng điểm của AE (cmt);
K là trung điểm của EF
⇒ HK là đường trung bình của ∆AEF nên HK // AF
d) Ta có: S∆AEF = S∆AHF + S∆HEF
\( \Leftrightarrow 30 = \frac{1}{2}AD\,.\,HF + \frac{1}{2}CE\,.\,HF\)
\( \Leftrightarrow \frac{1}{2}HF\left( {AD + CE} \right) = 30\)
\( \Leftrightarrow \frac{1}{2}.\frac{3}{2}CD\,.\,\left( {AD + AD} \right) = 30\)
\( \Leftrightarrow \frac{3}{2}CD\,.\,AD = 30\)
\[ \Leftrightarrow \frac{3}{2}\,.\,{S_{ABCD}} = 30\]
\( \Rightarrow {S_{ABCD}} = 30\,.\,\frac{2}{3} = 60\) (cm2).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có :
DI vuông CD (gt) Þ \(\widehat {IDC} = 90^\circ \)
CK vuông KI (gt) Þ \(\widehat {IKC} = 90^\circ \)
\( \Rightarrow \widehat {IDC} = \widehat {IKC} = 90^\circ \)
Mà 2 góc này ở 2 đỉnh kề nhau cùng nhìn cạnh CI
Suy ra CDIK là tứ giác nội tiếp.
b) Ta có:
\(\widehat {HCD} = \widehat {ABC}\) (cùng phụ góc \(\widehat {KCB}\))
Xét ∆HCD và ∆ABC có:
\(\widehat {HCD} = \widehat {ABC}\) (cmt )
\(\widehat {HDC} = \widehat {ACB} = 90^\circ \)
Suy ra ∆ABC ᔕ ∆HCD (g.g)
\( \Rightarrow \frac{{BC}}{{DC}} = \frac{{AC}}{{HD}}\) (2 cạnh tương ứng tỉ lệ )
Mà BD là đường phân giác của \(\widehat {ABC}\) (gt)
\( \Rightarrow \frac{{AB}}{{AD}} = \frac{{AC}}{{HD}}\)
Suy ra AD.AC = DH.AB (đpcm)
c) Gọi giao điểm của BN với AD là F'.
Ta có: AC là tiếp tuyến của (I;ID) nên \(\widehat {CDM} = \widehat {CBD} = \widehat {ABD}\)
\( \Rightarrow \widehat {MDB} = \widehat {CDB} - \widehat {CDM} = \widehat {CDB} - \widehat {ABD} = \widehat {CAB}\)
Mà \(\widehat {MDB} = \widehat {MNB} = \widehat {ANF'} \Rightarrow \widehat {ANF'} = \widehat {CAB}\)
Từ đó ∆F'AN ᔕ ∆F'BA (g.g)
\( \Rightarrow \frac{{F'A}}{{F'N}} = \frac{{F'B}}{{F'A}} \Rightarrow F'{A^2} = F'B\,.\,F'N\)
Mặt khác, vì F'D là tiếp tuyến của (I, ID) nên F'D2 = F'B.F'N
Þ F'A = F'D Þ F' ≡ F.
Từ đó ta có đpcm.
Lời giải
Số cách sắp xếp học sinh ba khối 10, 11 và 12 là: 3!;
Số cách sắp xếp các học sinh giỏi khối 12 là: 4!;
Số cách sắp xếp các học sinh giỏi khối 11 là: 5!;
Số cách sắp xếp các học sinh giỏi khối 10 là: 6!;
Vậy số cách sắp xếp 15 học sinh thành hàng ngang để đón đại biểu là: 3!.4!.5!.6!
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.