Câu hỏi:

19/08/2025 2,065 Lưu

Cho hình chữ nhật ABCD. Vẽ điểm E đối xứng với B qua điểm C; vẽ F đối xứng với điểm D qua C.

a) Chứng minh tứ giác BDEF là hình thoi.

b) Chứng minh AC = DE.

c) Gọi H là trung điểm của CD, K là trung điểm của EF. Chứng minh HK // AF.

d) Biết diện tích tam giác AEF bằng 30 cm2. Tính diện tích hình chữ nhật ABCD?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chữ nhật ABCD. Vẽ điểm E đối xứng với B qua điểm C; vẽ  F đối xứng với  (ảnh 1)

a) Xét tứ giác BDEF có:

C là trung điểm BF (E điểm đối xứng của B qua C)

C là trung điểm DF (F điểm đối xứng của D qua C)

Do đó tứ giác BDEF là hình bình hành

Mặc khác ABCD là hình chữ nhật nên BE DF tại C

Vậy tứ giá BDEF là hình thoi.

b) Ta có: ABCD là hình chữ nhật có AC = BD;

BDEF là hình thoi (câu a) có BD = DE

Do đó AC = DE.

c) Ta có: ABCD là hình chữ nhật có AD = BC;

Mà BC = CE (E điểm đối xúng B qua C).

Do đó AD = CE.

Xét tứ giác ADEC có:

AC = DE (câu b)

AD = CE (cmt)

Do đó ADEC là hình hình hành.

Mà H là trung điểm cua CD nên H cũng là trung điểm của AE.

Xét ∆AEF có:

H là trng điểm của AE (cmt);

K là trung điểm của EF

HK là đường trung bình của ∆AEF nên HK // AF

d) Ta có: S∆AEF = S∆AHF + S∆HEF

\( \Leftrightarrow 30 = \frac{1}{2}AD\,.\,HF + \frac{1}{2}CE\,.\,HF\)

\( \Leftrightarrow \frac{1}{2}HF\left( {AD + CE} \right) = 30\)

\( \Leftrightarrow \frac{1}{2}.\frac{3}{2}CD\,.\,\left( {AD + AD} \right) = 30\)

\( \Leftrightarrow \frac{3}{2}CD\,.\,AD = 30\)

\[ \Leftrightarrow \frac{3}{2}\,.\,{S_{ABCD}} = 30\]

\( \Rightarrow {S_{ABCD}} = 30\,.\,\frac{2}{3} = 60\) (cm2).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác  (ảnh 1)

a) Ta có :

DI vuông CD (gt) Þ \(\widehat {IDC} = 90^\circ \)

CK vuông KI (gt) Þ \(\widehat {IKC} = 90^\circ \)

\( \Rightarrow \widehat {IDC} = \widehat {IKC} = 90^\circ \)

Mà 2 góc này ở 2 đỉnh kề nhau cùng nhìn cạnh CI

Suy ra CDIK là tứ giác nội tiếp.

b) Ta có:

\(\widehat {HCD} = \widehat {ABC}\) (cùng phụ góc \(\widehat {KCB}\))

Xét ∆HCD và ∆ABC có:

\(\widehat {HCD} = \widehat {ABC}\) (cmt )

\(\widehat {HDC} = \widehat {ACB} = 90^\circ \)

Suy ra ∆ABC ∆HCD (g.g)

\( \Rightarrow \frac{{BC}}{{DC}} = \frac{{AC}}{{HD}}\) (2 cạnh tương ứng tỉ lệ )

Mà BD là đường phân giác của \(\widehat {ABC}\) (gt)

\( \Rightarrow \frac{{AB}}{{AD}} = \frac{{AC}}{{HD}}\)

Suy ra AD.AC = DH.AB (đpcm)

c) Gọi giao điểm của BN với AD là F'.

Ta có: AC là tiếp tuyến của (I;ID) nên \(\widehat {CDM} = \widehat {CBD} = \widehat {ABD}\)

\( \Rightarrow \widehat {MDB} = \widehat {CDB} - \widehat {CDM} = \widehat {CDB} - \widehat {ABD} = \widehat {CAB}\)

\(\widehat {MDB} = \widehat {MNB} = \widehat {ANF'} \Rightarrow \widehat {ANF'} = \widehat {CAB}\)

Từ đó ∆F'AN ∆F'BA (g.g)

\( \Rightarrow \frac{{F'A}}{{F'N}} = \frac{{F'B}}{{F'A}} \Rightarrow F'{A^2} = F'B\,.\,F'N\)

Mặt khác, vì F'D là tiếp tuyến của (I, ID) nên F'D2 = F'B.F'N

Þ F'A = F'D Þ F' ≡ F.

Từ đó ta có đpcm.

Lời giải

a) Hàm số \(y = \frac{1}{2}{x^2}\).

Bảng giá trị:

x

– 2

– 1

0

1

2

y

2

\(\frac{1}{2}\)

0

\(\frac{1}{2}\)

2

Đồ thị (P) của hàm số \(y = \frac{1}{2}{x^2}\)

Cho hàm số y = 1/2x^2 a) vẽ đồ thị (P) của hàm số. b) Tìm trên (P) những điểm (ảnh 1)

b) Điểm cách đều hai trục tọa độ nằm trên đường thẳng: y = x hoặc y = x.

Xét phương trình hoành độ giao điểm của parabol (P)\(y = \frac{1}{2}{x^2}\) và đường thẳng y = x:

\(\frac{1}{2}{x^2} = x\) x2 – 2x = 0 x(x – 2) = 0 \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2}\end{array}} \right.\)

• Với x = 0 y = 0 điểm O (0; 0)

• Với x = 2 y = 2 điểm A (2; 2)

Xét phương trình hoành độ giao điểm của parabol (P)\(y = \frac{1}{2}{x^2}\) và đường thẳng y = x:

\(\frac{1}{2}{x^2} = - x\) x2 + 2x = 0 x(x + 2) = 0 \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = - 2}\end{array}} \right.\)

Với x = 0 y = 0 điểm O (0; 0)

Với x = 2 y = 2 điểm B (2; 2)

Vậy có hai đểm A (2; 2) và B (2; 2) trên (P) cách đều hai trục tọa độ.

c) Gọi điểm\(M\left( {{x_0};\,\,\frac{9}{2}} \right)\) (P)

\( \Rightarrow \frac{9}{2} = \frac{1}{2}{\left( {{x_0}} \right)^2} \Leftrightarrow {\left( {{x_0}} \right)^2} = 9\)\[ \Leftrightarrow {x_0} = \left| 3 \right| \Rightarrow {x_0} = \pm 3\] ;

Vậy \({M_1}\left( {3;\,\,\frac{9}{2}} \right)\); \({M_2}\left( { - 3;\,\,\frac{9}{2}} \right) \in \left( P \right)\) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP