Câu hỏi:
13/07/2024 1,524Trong không gian hệ tọa độ Oxyz cho mặt phẳng (P): x – y + 2z – 2 = 0 và 2 điểm A (2; 3; 0); B (2; – 1; 2). Tìm điểm M thuộc mặt phẳng (P) sao cho \(\left| {MA - MB} \right|\) lớn nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đặt phương trình dạng: f = x – y + 2z – 2
⇒ f(A) . f(B) = ( –2). 5 = −10 < 0 nên A, B nằm hai phía khác nhau so với mặt phẳng (P).
A’ là điểm đối xứng của A qua (P) có phương trinh đường thẳng AA’: \(\frac{{x - 2}}{1} = \frac{{y - 3}}{{ - 1}} = \frac{z}{2}\)
Gọi I là điểm đường thẳng AA’ và mặt phẳng (P) có: I (2 + t; 3 – t; 2t) ∈ (P)
⇒ t + 2 + t – 3 + 4t – 2 = 0 \( \Leftrightarrow t = \frac{1}{2}\)
\( \Rightarrow I\left( {\frac{5}{2};\,\,\frac{5}{2};\,\,1} \right)\) ⇒ A’ (3; 2; 2).
\(\left| {MA - MB} \right| = \left| {MA' - MB} \right| \le A'B\)
\( \Rightarrow \left| {MA - MB} \right| = A'B\)⇔ A’; B; M thẳng hàng.
Phương trình đường thẳng A’B: \(\left\{ {\begin{array}{*{20}{c}}{x = 3 + a}\\{y = 2 + 3a}\\{z = 2}\end{array}} \right.\)
Mà M = A’B ∩ (P)
Vậy \(M = \left( {\frac{9}{2};\,\,\frac{{13}}{2};\,\,2} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác trong BD (K Î AB, D Î AC). Qua D kẻ đường thẳng vuông góc với AC cắt CK, AB lần lượt tại H và I.
a) Chứng minh CDKI là tứ giác nội tiếp.
b) Chứng minh AD.AC = DH.AB
c) Gọi F là trung điểm AD. Đường tròn tâm I bán kính ID cắt BC tại M (M khác B) và cắt AM tại N (N khác M). Chứng minh B, N, F thẳng hàng.
Câu 2:
Một trường trung học phổ thông có 4 học sinh giỏi khối 12, có 5 học sinh giỏi khối 11, có 6 học sinh giỏi khối 10. Hỏi có bao nhiêu cách sắp xếp 15 học sinh trên thành một hàng ngang để đón đoàn đại biểu, nếu các học sinh ở cùng một khối thì xếp gần nhau.
Câu 3:
Chứng minh rằng:
a) \(\sin \alpha + \cos \alpha = \sqrt 2 \cos \left( {\alpha - \frac{\pi }{4}} \right) = \sqrt 2 \sin \left( {\alpha + \frac{\pi }{4}} \right)\);
b) \(\sin \alpha - \cos \alpha = \sqrt 2 \sin \left( {\alpha - \frac{\pi }{4}} \right) = - \sqrt 2 \cos \left( {\alpha + \frac{\pi }{4}} \right)\).Câu 4:
Chứng minh: \(\overrightarrow {AB} - \overrightarrow {CD} = \overrightarrow {AC} - \overrightarrow {BD} \)
Câu 5:
Cho đường thẳng (d) có phương trình y = (3m – 2)x + m – 2 (với m là tham số)
a) Tìm giá trị của m biết đường thẳng (d) đi qua điểm A(1; 2). Vẽ đồ thị hàm số với m tìm được
b) Đường thẳng (d) cắt Ox tại A, Oy tại B. Tìm m để diện tích ∆OAB bằng \(\frac{1}{2}\).
Câu 6:
Cho tam giác ∆ABC chứng minh rằng:
a) \(\sin \left( {\frac{{\widehat A + \widehat B}}{2}} \right) = \cos \frac{{\widehat C}}{2}\);
b) \(\tan \left( {2\widehat A + \widehat B + \widehat C} \right) = \tan \widehat A\);
c) \(\sin \left( {\frac{{\widehat A + \widehat B + 3\widehat C}}{2}} \right) = \cos \widehat C\).
Câu 7:
Tìm A ∪ B ∪ C, A ∩ B ∩ C với:
a) A = [1 ; 4], B = (2; 6), C = (1; 2);
b) A = [ 0; 4], B = (1; 5), C = (–3; 1];
c) A = ( –5; 1], B = [3; +∞), C = ( –∞; – 2).
về câu hỏi!