Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Điều kiện xác định: \(\left\{ {\begin{array}{*{20}{c}}{x + 1 \ge 0}\\{x \ge 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ge - 1}\\{x \ge 0}\end{array}} \right.\)⇔ x ≥ 0
Tập xác định: D = [0; +∞)
\(\sqrt {x + 1} + 1 = 4{x^2} + \sqrt {3x} \)
\( \Leftrightarrow \sqrt {x + 1} - \sqrt {3x} = 4{x^2} - 1\)
\( \Leftrightarrow \frac{{\left( {\sqrt {x + 1} - \sqrt {3x} } \right)\left( {\sqrt {x + 1} + \sqrt {3x} } \right)}}{{\sqrt {x + 1} + \sqrt {3x} }} = 4{x^2} - 1\)
\( \Leftrightarrow \frac{{x + 1 - 3x}}{{\sqrt {x + 1} + \sqrt {3x} }} = \left( {2x - 1} \right)\left( {2x + 1} \right)\)
\( \Leftrightarrow \frac{{1 - 2x}}{{\sqrt {x + 1} + \sqrt {3x} }} = \left( {2x - 1} \right)\left( {2x + 1} \right)\)
\( \Leftrightarrow \frac{{1 - 2x}}{{\sqrt {x + 1} + \sqrt {3x} }} - \left( {2x - 1} \right)\left( {2x + 1} \right) = 0\)
\( \Leftrightarrow \frac{{ - \left( {2x - 1} \right)}}{{\sqrt {x + 1} + \sqrt {3x} }} - \left( {2x - 1} \right)\left( {2x + 1} \right) = 0\)
\( \Leftrightarrow \left( {2x - 1} \right)\left( {\frac{{ - 1}}{{\sqrt {x + 1} + \sqrt {3x} }} - \left( {2x + 1} \right)} \right) = 0\)
\( \Leftrightarrow - \left( {2x - 1} \right)\left( {\frac{1}{{\sqrt {x + 1} + \sqrt {3x} }} + 2x + 1} \right) = 0\)
\( \Leftrightarrow \left( {1 - 2x} \right)\left( {\frac{1}{{\sqrt {x + 1} + \sqrt {3x} }} + 2x + 1} \right) = 0\)
Với \(\frac{1}{{\sqrt {x + 1} + \sqrt {3x} }} + 2x + 1 > 0\forall x \in D\)
⇒ 1 – 2x = 0
⇔ 2x = 1
\( \Leftrightarrow x = \frac{1}{2}\)
Vậy nghiệm của phương trình là: \(S = \left\{ {\frac{1}{2}} \right\}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác trong BD (K Î AB, D Î AC). Qua D kẻ đường thẳng vuông góc với AC cắt CK, AB lần lượt tại H và I.
a) Chứng minh CDKI là tứ giác nội tiếp.
b) Chứng minh AD.AC = DH.AB
c) Gọi F là trung điểm AD. Đường tròn tâm I bán kính ID cắt BC tại M (M khác B) và cắt AM tại N (N khác M). Chứng minh B, N, F thẳng hàng.
Câu 2:
Một trường trung học phổ thông có 4 học sinh giỏi khối 12, có 5 học sinh giỏi khối 11, có 6 học sinh giỏi khối 10. Hỏi có bao nhiêu cách sắp xếp 15 học sinh trên thành một hàng ngang để đón đoàn đại biểu, nếu các học sinh ở cùng một khối thì xếp gần nhau.
Câu 3:
Chứng minh rằng:
a) \(\sin \alpha + \cos \alpha = \sqrt 2 \cos \left( {\alpha - \frac{\pi }{4}} \right) = \sqrt 2 \sin \left( {\alpha + \frac{\pi }{4}} \right)\);
b) \(\sin \alpha - \cos \alpha = \sqrt 2 \sin \left( {\alpha - \frac{\pi }{4}} \right) = - \sqrt 2 \cos \left( {\alpha + \frac{\pi }{4}} \right)\).Câu 4:
Chứng minh: \(\overrightarrow {AB} - \overrightarrow {CD} = \overrightarrow {AC} - \overrightarrow {BD} \)
Câu 5:
Cho đường thẳng (d) có phương trình y = (3m – 2)x + m – 2 (với m là tham số)
a) Tìm giá trị của m biết đường thẳng (d) đi qua điểm A(1; 2). Vẽ đồ thị hàm số với m tìm được
b) Đường thẳng (d) cắt Ox tại A, Oy tại B. Tìm m để diện tích ∆OAB bằng \(\frac{1}{2}\).
Câu 6:
Cho tam giác ∆ABC chứng minh rằng:
a) \(\sin \left( {\frac{{\widehat A + \widehat B}}{2}} \right) = \cos \frac{{\widehat C}}{2}\);
b) \(\tan \left( {2\widehat A + \widehat B + \widehat C} \right) = \tan \widehat A\);
c) \(\sin \left( {\frac{{\widehat A + \widehat B + 3\widehat C}}{2}} \right) = \cos \widehat C\).
Câu 7:
Tìm A ∪ B ∪ C, A ∩ B ∩ C với:
a) A = [1 ; 4], B = (2; 6), C = (1; 2);
b) A = [ 0; 4], B = (1; 5), C = (–3; 1];
c) A = ( –5; 1], B = [3; +∞), C = ( –∞; – 2).
về câu hỏi!