Câu hỏi:

13/07/2024 231

Giải phương trình \(\sqrt {x + 1} + 1 = 4{x^2} + \sqrt {3x} \)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện xác định: \(\left\{ {\begin{array}{*{20}{c}}{x + 1 \ge 0}\\{x \ge 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ge - 1}\\{x \ge 0}\end{array}} \right.\) x ≥ 0

Tập xác định: D = [0; +∞)

\(\sqrt {x + 1} + 1 = 4{x^2} + \sqrt {3x} \)

\( \Leftrightarrow \sqrt {x + 1} - \sqrt {3x} = 4{x^2} - 1\)

\( \Leftrightarrow \frac{{\left( {\sqrt {x + 1} - \sqrt {3x} } \right)\left( {\sqrt {x + 1} + \sqrt {3x} } \right)}}{{\sqrt {x + 1} + \sqrt {3x} }} = 4{x^2} - 1\)

\( \Leftrightarrow \frac{{x + 1 - 3x}}{{\sqrt {x + 1} + \sqrt {3x} }} = \left( {2x - 1} \right)\left( {2x + 1} \right)\)

\( \Leftrightarrow \frac{{1 - 2x}}{{\sqrt {x + 1} + \sqrt {3x} }} = \left( {2x - 1} \right)\left( {2x + 1} \right)\)

\( \Leftrightarrow \frac{{1 - 2x}}{{\sqrt {x + 1} + \sqrt {3x} }} - \left( {2x - 1} \right)\left( {2x + 1} \right) = 0\)

\( \Leftrightarrow \frac{{ - \left( {2x - 1} \right)}}{{\sqrt {x + 1} + \sqrt {3x} }} - \left( {2x - 1} \right)\left( {2x + 1} \right) = 0\)

\( \Leftrightarrow \left( {2x - 1} \right)\left( {\frac{{ - 1}}{{\sqrt {x + 1} + \sqrt {3x} }} - \left( {2x + 1} \right)} \right) = 0\)

\( \Leftrightarrow - \left( {2x - 1} \right)\left( {\frac{1}{{\sqrt {x + 1} + \sqrt {3x} }} + 2x + 1} \right) = 0\)

\( \Leftrightarrow \left( {1 - 2x} \right)\left( {\frac{1}{{\sqrt {x + 1} + \sqrt {3x} }} + 2x + 1} \right) = 0\)

Với \(\frac{1}{{\sqrt {x + 1} + \sqrt {3x} }} + 2x + 1 > 0\forall x \in D\)

1 – 2x = 0

2x = 1

\( \Leftrightarrow x = \frac{1}{2}\)

Vậy nghiệm của phương trình là: \(S = \left\{ {\frac{1}{2}} \right\}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác trong BD (K Î AB, D Î AC). Qua D kẻ đường thẳng vuông góc với AC cắt CK, AB lần lượt tại H và I.

a) Chứng minh CDKI là tứ giác nội tiếp.

b) Chứng minh AD.AC = DH.AB

c) Gọi F là trung điểm AD. Đường tròn tâm I bán kính ID cắt BC tại M (M khác B) và cắt AM tại N (N khác M). Chứng minh B, N, F thẳng hàng.

Xem đáp án » 13/07/2024 15,106

Câu 2:

Một trường trung học phổ thông có 4 học sinh giỏi khối 12, có 5 học sinh giỏi khối 11, có 6 học sinh giỏi khối 10. Hỏi có bao nhiêu cách sắp xếp 15 học sinh trên thành một hàng ngang để đón đoàn đại biểu, nếu các học sinh ở cùng một khối thì xếp gần nhau.

Xem đáp án » 13/07/2024 9,361

Câu 3:

Chứng minh rằng:

a) \(\sin \alpha + \cos \alpha = \sqrt 2 \cos \left( {\alpha - \frac{\pi }{4}} \right) = \sqrt 2 \sin \left( {\alpha + \frac{\pi }{4}} \right)\);

b) \(\sin \alpha - \cos \alpha = \sqrt 2 \sin \left( {\alpha - \frac{\pi }{4}} \right) = - \sqrt 2 \cos \left( {\alpha + \frac{\pi }{4}} \right)\).

Xem đáp án » 13/07/2024 4,927

Câu 4:

Chứng minh: \(\overrightarrow {AB} - \overrightarrow {CD} = \overrightarrow {AC} - \overrightarrow {BD} \)

Xem đáp án » 13/07/2024 4,862

Câu 5:

Cho đường thẳng (d) có phương trình y = (3m – 2)x + m – 2 (với m là tham số)
a) Tìm giá trị của m biết đường thẳng (d) đi qua điểm A(1; 2). Vẽ đồ thị hàm số với m tìm được

b) Đường thẳng (d) cắt Ox tại A, Oy tại B. Tìm m để diện tích ∆OAB bằng \(\frac{1}{2}\).

Xem đáp án » 13/07/2024 4,141

Câu 6:

Cho tam giác ∆ABC chứng minh rằng:

a) \(\sin \left( {\frac{{\widehat A + \widehat B}}{2}} \right) = \cos \frac{{\widehat C}}{2}\);

b) \(\tan \left( {2\widehat A + \widehat B + \widehat C} \right) = \tan \widehat A\);

c) \(\sin \left( {\frac{{\widehat A + \widehat B + 3\widehat C}}{2}} \right) = \cos \widehat C\).

Xem đáp án » 13/07/2024 4,062

Câu 7:

Tìm A B C, A ∩ B ∩ C với:

a) A = [1 ; 4], B = (2; 6), C = (1; 2);

b) A = [ 0; 4], B = (1; 5), C = (–3; 1];

c) A = ( –5; 1], B = [3; +∞), C = ( –∞; 2).

Xem đáp án » 13/07/2024 4,042

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store