Câu hỏi:

11/07/2024 4,988

Từ một điểm A nằm ngoài đường tròn (O; R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường tròn (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại hai điểm M và N (M nằm giữa A và N). Chứng minh:

a) CD // OA.

b) AC là tiếp tuyến của đường tròn (O).

c) Cho biết R = 15 cm, BC = 24 cm. Tính AB, OA.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Từ một điểm A nằm ngoài đường tròn (O; R) kẻ tiếp tuyến AB với (O) (B là  (ảnh 1)

a) Ta có: OD = OB và D, B, C Î (O; R)

Suy ra tam giác BCD là tam giác vuông tại C

Þ \(\widehat {DCB} = 90^\circ \) hay CD ^ BC

Mặt khác OH ^ BH (giả thiết)

Þ DC // OH mà H Î OA nên DC // OA

b) Xét ∆OBH và ∆OCH có:

OH: cạnh chung

BO = CO (bán kính của đường tròn tâm O)

\(\widehat {OHB} = \widehat {OHC} = 90^\circ \) (giả thiết)

Do đó ∆OBH = ∆OCH (cạnh huyền - cạnh góc nhọn)

\( \Rightarrow \widehat {BOH} = \widehat {COH}\) (Hai góc tương ứng)

Xét ∆OBA và ∆OCA có:

AO: cạnh chung

BO = CO (bán kính của đường tròn tâm O)

\(\widehat {BOA} = \widehat {COA}\) (cmt)

Do đó ∆ABO = ∆ACO (c.g.c)

Þ \(\widehat {OBA} = \widehat {OCA}\) (Hai góc tương ứng)

\(\widehat {ABO} = 90^\circ \) (AB là tiếp tuyến của (O))

Nên \(\widehat {OCA} = \widehat {OBA} = 90^\circ \) và C Î AC; C Î (O; R)

Suy ra AC là tiếp tuyến của (O).

c) Ta có: \(HB = HC = \frac{{BC}}{2} = \frac{{24}}{2} = 12\;\left( {cm} \right)\) và R = 15 (cm) nên

Áp dụng hệ thức lượng trong tam giác vuông vào tam giác OAB vuông tại B ta có:

+) \(\frac{1}{{H{B^2}}} = \frac{1}{{B{A^2}}} + \frac{1}{{B{O^2}}} \Rightarrow \frac{1}{{{{12}^2}}} = \frac{1}{{B{A^2}}} + \frac{1}{{{{15}^2}}}\)

\( \Leftrightarrow \frac{1}{{B{A^2}}} = \frac{1}{{{{12}^2}}} - \frac{1}{{{{15}^2}}} = \frac{1}{{400}}\)

\( \Rightarrow BA = 20\;\left( {cm} \right)\)

+) \(AB\,.\,OB = BH\,.\,OA \Leftrightarrow OA = \frac{{AB\,.\,OB}}{{BH}}\)

\( \Rightarrow OA = \frac{{20\,.\,15}}{{12}} = 25\;\left( {cm} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác trong BD (K Î AB, D Î AC). Qua D kẻ đường thẳng vuông góc với AC cắt CK, AB lần lượt tại H và I.

a) Chứng minh CDKI là tứ giác nội tiếp.

b) Chứng minh AD.AC = DH.AB

c) Gọi F là trung điểm AD. Đường tròn tâm I bán kính ID cắt BC tại M (M khác B) và cắt AM tại N (N khác M). Chứng minh B, N, F thẳng hàng.

Xem đáp án » 13/07/2024 20,127

Câu 2:

Một trường trung học phổ thông có 4 học sinh giỏi khối 12, có 5 học sinh giỏi khối 11, có 6 học sinh giỏi khối 10. Hỏi có bao nhiêu cách sắp xếp 15 học sinh trên thành một hàng ngang để đón đoàn đại biểu, nếu các học sinh ở cùng một khối thì xếp gần nhau.

Xem đáp án » 13/07/2024 12,675

Câu 3:

Cho tam giác ABC cân tại A, M trung điểm BC, H là hình chiếu của M trên AC, E là trung điểm MH . Chứng minh AE vuông góc với BH

Xem đáp án » 13/07/2024 9,643

Câu 4:

Cho tam giác ABC, AB = AC. Tia phân giác của góc A cắt BC tại M.

a) Chứng minh: ∆AMB = ∆AMC.

b) Chứng minh M là trung điểm của cạnh BC.

c) K là một điểm bất kì trên đoạn thẳng AM, đường thẳng CK cắt cạnh AB tại I. Vẽ IH vuông góc với BC tại H. Chứng minh \(\widehat {BAC} = 2\widehat {BIH}\).

Xem đáp án » 13/07/2024 8,630

Câu 5:

Vẽ đồ thị hàm số y = x2 − 3x + 2

Xem đáp án » 13/07/2024 7,794

Câu 6:

Cho ∆ABC cân tại A. H là trung điểm của BC. D là hình chiếu của H trên AC, M là trung điểm của HD. Chứng minh AM vuông góc BD.

Xem đáp án » 13/07/2024 6,666

Câu 7:

Chứng minh: \(\overrightarrow {AB} - \overrightarrow {CD} = \overrightarrow {AC} - \overrightarrow {BD} \)

Xem đáp án » 13/07/2024 6,258

Bình luận


Bình luận