Câu hỏi:
11/07/2024 4,988Từ một điểm A nằm ngoài đường tròn (O; R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường tròn (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại hai điểm M và N (M nằm giữa A và N). Chứng minh:
a) CD // OA.
b) AC là tiếp tuyến của đường tròn (O).
c) Cho biết R = 15 cm, BC = 24 cm. Tính AB, OA.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
a) Ta có: OD = OB và D, B, C Î (O; R)
Suy ra tam giác BCD là tam giác vuông tại C
Þ \(\widehat {DCB} = 90^\circ \) hay CD ^ BC
Mặt khác OH ^ BH (giả thiết)
Þ DC // OH mà H Î OA nên DC // OA
b) Xét ∆OBH và ∆OCH có:
OH: cạnh chung
BO = CO (bán kính của đường tròn tâm O)
\(\widehat {OHB} = \widehat {OHC} = 90^\circ \) (giả thiết)
Do đó ∆OBH = ∆OCH (cạnh huyền - cạnh góc nhọn)
\( \Rightarrow \widehat {BOH} = \widehat {COH}\) (Hai góc tương ứng)
Xét ∆OBA và ∆OCA có:
AO: cạnh chung
BO = CO (bán kính của đường tròn tâm O)
\(\widehat {BOA} = \widehat {COA}\) (cmt)
Do đó ∆ABO = ∆ACO (c.g.c)
Þ \(\widehat {OBA} = \widehat {OCA}\) (Hai góc tương ứng)
Mà \(\widehat {ABO} = 90^\circ \) (AB là tiếp tuyến của (O))
Nên \(\widehat {OCA} = \widehat {OBA} = 90^\circ \) và C Î AC; C Î (O; R)
Suy ra AC là tiếp tuyến của (O).
c) Ta có: \(HB = HC = \frac{{BC}}{2} = \frac{{24}}{2} = 12\;\left( {cm} \right)\) và R = 15 (cm) nên
Áp dụng hệ thức lượng trong tam giác vuông vào tam giác OAB vuông tại B ta có:
+) \(\frac{1}{{H{B^2}}} = \frac{1}{{B{A^2}}} + \frac{1}{{B{O^2}}} \Rightarrow \frac{1}{{{{12}^2}}} = \frac{1}{{B{A^2}}} + \frac{1}{{{{15}^2}}}\)
\( \Leftrightarrow \frac{1}{{B{A^2}}} = \frac{1}{{{{12}^2}}} - \frac{1}{{{{15}^2}}} = \frac{1}{{400}}\)
\( \Rightarrow BA = 20\;\left( {cm} \right)\)
+) \(AB\,.\,OB = BH\,.\,OA \Leftrightarrow OA = \frac{{AB\,.\,OB}}{{BH}}\)
\( \Rightarrow OA = \frac{{20\,.\,15}}{{12}} = 25\;\left( {cm} \right)\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác trong BD (K Î AB, D Î AC). Qua D kẻ đường thẳng vuông góc với AC cắt CK, AB lần lượt tại H và I.
a) Chứng minh CDKI là tứ giác nội tiếp.
b) Chứng minh AD.AC = DH.AB
c) Gọi F là trung điểm AD. Đường tròn tâm I bán kính ID cắt BC tại M (M khác B) và cắt AM tại N (N khác M). Chứng minh B, N, F thẳng hàng.
Câu 2:
Một trường trung học phổ thông có 4 học sinh giỏi khối 12, có 5 học sinh giỏi khối 11, có 6 học sinh giỏi khối 10. Hỏi có bao nhiêu cách sắp xếp 15 học sinh trên thành một hàng ngang để đón đoàn đại biểu, nếu các học sinh ở cùng một khối thì xếp gần nhau.
Câu 3:
Cho tam giác ABC cân tại A, M trung điểm BC, H là hình chiếu của M trên AC, E là trung điểm MH . Chứng minh AE vuông góc với BH
Câu 4:
Cho tam giác ABC, AB = AC. Tia phân giác của góc A cắt BC tại M.
a) Chứng minh: ∆AMB = ∆AMC.
b) Chứng minh M là trung điểm của cạnh BC.
c) K là một điểm bất kì trên đoạn thẳng AM, đường thẳng CK cắt cạnh AB tại I. Vẽ IH vuông góc với BC tại H. Chứng minh \(\widehat {BAC} = 2\widehat {BIH}\).
Câu 6:
Cho ∆ABC cân tại A. H là trung điểm của BC. D là hình chiếu của H trên AC, M là trung điểm của HD. Chứng minh AM vuông góc BD.
Câu 7:
Chứng minh: \(\overrightarrow {AB} - \overrightarrow {CD} = \overrightarrow {AC} - \overrightarrow {BD} \)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
về câu hỏi!