Câu hỏi:

11/07/2024 5,484

Từ một điểm A nằm ngoài đường tròn (O; R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường tròn (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại hai điểm M và N (M nằm giữa A và N). Chứng minh:

a) CD // OA.

b) AC là tiếp tuyến của đường tròn (O).

c) Cho biết R = 15 cm, BC = 24 cm. Tính AB, OA.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Từ một điểm A nằm ngoài đường tròn (O; R) kẻ tiếp tuyến AB với (O) (B là  (ảnh 1)

a) Ta có: OD = OB và D, B, C Î (O; R)

Suy ra tam giác BCD là tam giác vuông tại C

Þ \(\widehat {DCB} = 90^\circ \) hay CD ^ BC

Mặt khác OH ^ BH (giả thiết)

Þ DC // OH mà H Î OA nên DC // OA

b) Xét ∆OBH và ∆OCH có:

OH: cạnh chung

BO = CO (bán kính của đường tròn tâm O)

\(\widehat {OHB} = \widehat {OHC} = 90^\circ \) (giả thiết)

Do đó ∆OBH = ∆OCH (cạnh huyền - cạnh góc nhọn)

\( \Rightarrow \widehat {BOH} = \widehat {COH}\) (Hai góc tương ứng)

Xét ∆OBA và ∆OCA có:

AO: cạnh chung

BO = CO (bán kính của đường tròn tâm O)

\(\widehat {BOA} = \widehat {COA}\) (cmt)

Do đó ∆ABO = ∆ACO (c.g.c)

Þ \(\widehat {OBA} = \widehat {OCA}\) (Hai góc tương ứng)

\(\widehat {ABO} = 90^\circ \) (AB là tiếp tuyến của (O))

Nên \(\widehat {OCA} = \widehat {OBA} = 90^\circ \) và C Î AC; C Î (O; R)

Suy ra AC là tiếp tuyến của (O).

c) Ta có: \(HB = HC = \frac{{BC}}{2} = \frac{{24}}{2} = 12\;\left( {cm} \right)\) và R = 15 (cm) nên

Áp dụng hệ thức lượng trong tam giác vuông vào tam giác OAB vuông tại B ta có:

+) \(\frac{1}{{H{B^2}}} = \frac{1}{{B{A^2}}} + \frac{1}{{B{O^2}}} \Rightarrow \frac{1}{{{{12}^2}}} = \frac{1}{{B{A^2}}} + \frac{1}{{{{15}^2}}}\)

\( \Leftrightarrow \frac{1}{{B{A^2}}} = \frac{1}{{{{12}^2}}} - \frac{1}{{{{15}^2}}} = \frac{1}{{400}}\)

\( \Rightarrow BA = 20\;\left( {cm} \right)\)

+) \(AB\,.\,OB = BH\,.\,OA \Leftrightarrow OA = \frac{{AB\,.\,OB}}{{BH}}\)

\( \Rightarrow OA = \frac{{20\,.\,15}}{{12}} = 25\;\left( {cm} \right)\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác trong BD (K Î AB, D Î AC). Qua D kẻ đường thẳng vuông góc với AC cắt CK, AB lần lượt tại H và I.

a) Chứng minh CDKI là tứ giác nội tiếp.

b) Chứng minh AD.AC = DH.AB

c) Gọi F là trung điểm AD. Đường tròn tâm I bán kính ID cắt BC tại M (M khác B) và cắt AM tại N (N khác M). Chứng minh B, N, F thẳng hàng.

Xem đáp án » 13/07/2024 27,740

Câu 2:

Một trường trung học phổ thông có 4 học sinh giỏi khối 12, có 5 học sinh giỏi khối 11, có 6 học sinh giỏi khối 10. Hỏi có bao nhiêu cách sắp xếp 15 học sinh trên thành một hàng ngang để đón đoàn đại biểu, nếu các học sinh ở cùng một khối thì xếp gần nhau.

Xem đáp án » 13/07/2024 17,511

Câu 3:

Cho hàm số \(y = \frac{1}{2}{x^2}\).

a) Vẽ đồ thị (P) của hàm số.

b) Tìm trên (P) những điểm cách đều hai trục tọa độ (không trùng với O).

c) Tìm trên (P) những điểm có tung độ bằng \(\frac{9}{2}\).

Xem đáp án » 13/07/2024 11,461

Câu 4:

Cho tam giác ABC, AB = AC. Tia phân giác của góc A cắt BC tại M.

a) Chứng minh: ∆AMB = ∆AMC.

b) Chứng minh M là trung điểm của cạnh BC.

c) K là một điểm bất kì trên đoạn thẳng AM, đường thẳng CK cắt cạnh AB tại I. Vẽ IH vuông góc với BC tại H. Chứng minh \(\widehat {BAC} = 2\widehat {BIH}\).

Xem đáp án » 13/07/2024 10,871

Câu 5:

Cho tam giác ABC cân tại A, M trung điểm BC, H là hình chiếu của M trên AC, E là trung điểm MH . Chứng minh AE vuông góc với BH

Xem đáp án » 13/07/2024 10,221

Câu 6:

Vẽ đồ thị hàm số y = x2 − 3x + 2

Xem đáp án » 13/07/2024 9,422

Câu 7:

Cho ∆ABC cân tại A. H là trung điểm của BC. D là hình chiếu của H trên AC, M là trung điểm của HD. Chứng minh AM vuông góc BD.

Xem đáp án » 13/07/2024 7,288
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua