Câu hỏi:
13/07/2024 2,987
Cho hai hàm số y = −x + 3 và y = 3x − 1 có đồ thị lần lượt là hai đường thẳng d1 và d2.
a) Vẽ d1 và d2 trên cùng một hệ trục tọa độ.
b) Tính góc tạo bởi d1, d2 và trục Ox (làm tròn đến độ).
d) Tính khoảng cách từ O đến d1, d2.
Cho hai hàm số y = −x + 3 và y = 3x − 1 có đồ thị lần lượt là hai đường thẳng d1 và d2.
a) Vẽ d1 và d2 trên cùng một hệ trục tọa độ.
b) Tính góc tạo bởi d1, d2 và trục Ox (làm tròn đến độ).
d) Tính khoảng cách từ O đến d1, d2.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
a) +) Lấy hai điểm thuộc d1.
• x = 1 Þ y = 2 nên ta có điểm A(1; 2).
• x = 2 Þ y = 1 nên ta có điểm B(2; 1).
+) Lấy hai điểm thuộc d2.
• x = 1 Þ y = 2 nên ta có điểm A(1; 2).
• x = 0 Þ y = −1 nên ta có điểm C(0; −1).

b) Tọa độ giao điểm là nghiệm của hệ phương trình
\[\left\{ \begin{array}{l}y = - x + 3\\y = 3x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = 3\\3x - y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right. \Rightarrow A\left( {1;\;2} \right)\]
c) Ta có: \[\tan {\alpha _1} = {a_1} = - 1 \Rightarrow - {\alpha _1} = 45^\circ \].
Và \(\tan {\alpha _2} = {a_2} = 3 \Rightarrow {\alpha _2} \approx 71,565^\circ \).
Vậy \[\alpha = 180^\circ - 45^\circ - 71,565^\circ \approx 63^\circ \].
d) Khoảng cách từ O đến d1 là:
\({d_{O/{d_1}}} = \frac{{\left| 3 \right|}}{{\sqrt {{1^2} + {1^2}} }} = \frac{1}{{\sqrt 2 }}\).
Khoảng cách từ O đến d2 là:
\({d_{O/{d_2}}} = \frac{{\left| { - 1} \right|}}{{\sqrt {{3^2} + {{\left( { - 1} \right)}^2}} }} = \frac{1}{{\sqrt {10} }}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có :
DI vuông CD (gt) Þ \(\widehat {IDC} = 90^\circ \)
CK vuông KI (gt) Þ \(\widehat {IKC} = 90^\circ \)
\( \Rightarrow \widehat {IDC} = \widehat {IKC} = 90^\circ \)
Mà 2 góc này ở 2 đỉnh kề nhau cùng nhìn cạnh CI
Suy ra CDIK là tứ giác nội tiếp.
b) Ta có:
\(\widehat {HCD} = \widehat {ABC}\) (cùng phụ góc \(\widehat {KCB}\))
Xét ∆HCD và ∆ABC có:
\(\widehat {HCD} = \widehat {ABC}\) (cmt )
\(\widehat {HDC} = \widehat {ACB} = 90^\circ \)
Suy ra ∆ABC ᔕ ∆HCD (g.g)
\( \Rightarrow \frac{{BC}}{{DC}} = \frac{{AC}}{{HD}}\) (2 cạnh tương ứng tỉ lệ )
Mà BD là đường phân giác của \(\widehat {ABC}\) (gt)
\( \Rightarrow \frac{{AB}}{{AD}} = \frac{{AC}}{{HD}}\)
Suy ra AD.AC = DH.AB (đpcm)
c) Gọi giao điểm của BN với AD là F'.
Ta có: AC là tiếp tuyến của (I;ID) nên \(\widehat {CDM} = \widehat {CBD} = \widehat {ABD}\)
\( \Rightarrow \widehat {MDB} = \widehat {CDB} - \widehat {CDM} = \widehat {CDB} - \widehat {ABD} = \widehat {CAB}\)
Mà \(\widehat {MDB} = \widehat {MNB} = \widehat {ANF'} \Rightarrow \widehat {ANF'} = \widehat {CAB}\)
Từ đó ∆F'AN ᔕ ∆F'BA (g.g)
\( \Rightarrow \frac{{F'A}}{{F'N}} = \frac{{F'B}}{{F'A}} \Rightarrow F'{A^2} = F'B\,.\,F'N\)
Mặt khác, vì F'D là tiếp tuyến của (I, ID) nên F'D2 = F'B.F'N
Þ F'A = F'D Þ F' ≡ F.
Từ đó ta có đpcm.
Lời giải
Số cách sắp xếp học sinh ba khối 10, 11 và 12 là: 3!;
Số cách sắp xếp các học sinh giỏi khối 12 là: 4!;
Số cách sắp xếp các học sinh giỏi khối 11 là: 5!;
Số cách sắp xếp các học sinh giỏi khối 10 là: 6!;
Vậy số cách sắp xếp 15 học sinh thành hàng ngang để đón đại biểu là: 3!.4!.5!.6!
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.