Câu hỏi:

13/07/2024 5,207

Cho nửa đường tròn tâm O bán kính R đường kính AB. Gọi Ax, By là các tia tiếp tuyến của nửa đường tròn và thuộc cùng 1 nửa mặt phẳng có chứa nửa đường tròn qua M thuộc nửa đường tròn vẽ tiếp tuyến với nửa đường với nửa đường tròn cắt Ax, By lần lượt tại C, D.

a) Chứng minh rằng CD = AC + BD, \(\widehat {COD} = 90^\circ \)

b) AC.BD = R2

c) Chứng minh AB là tiếp tuyến của đường tròn, đường kính CD

d) AD cắt BC tại N, MN cắt AB tại K. Chứng minh rằng: MN // AC

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho nửa đường tròn tâm O bán kính R đường kính AB. Gọi Ax, By là các tia  (ảnh 1)

a) Do CA và CM là hai tiếp tuyến cắt nhau nên CA = CM

Do DM và DB là hai tiếp tuyến cắt nhau nên DM = DB

Suy ra CD = CM + MD = CA + DB (đpcm)

Ta có \(\widehat {{O_1}} = \widehat {{O_2}}\) (tính chất 2 tiếp tuyến cắt nhau)

và \(\widehat {{O_3}} = \widehat {{O_4}}\) (tính chất 2 tiếp tuyến cắt nhau)

\( \Rightarrow \widehat {COD} = \widehat {{O_2}} + \widehat {{O_3}} = \frac{{\widehat {{O_1}} + \widehat {{O_2}} + \widehat {{O_3}} + \widehat {{O_4}}}}{2} = 90^\circ \) (đpcm)

b) ΔCOD vuông tại O có đường cao OM

Áp dụng hệ thức lượng ta có:

OM2 = CM.MD Þ R2 = CA.DB (đpcm)

 c) Gọi I là trung điểm của CD thì OI là đường trung bình của hình thang ACDB

Þ IO // AC // BD

Þ IO ^ AB mà OI = IC = ID

Vậy I là tâm đường tròn đường kính CD

Hay AB là tiếp tuyến của đường tròn (I; IC).

d) Do Ax và By là hai tiếp tuyến của (O)

Nên Ax // By (vì cùng ^ AB)

Hay AC // DB

Theo định lý Ta-let ta có:

\(\frac{{NA}}{{ND}} = \frac{{NC}}{{NB}} = \frac{{AC}}{{BD}}\)

Mà AC = CM và BD = DM Þ \(\frac{{AC}}{{BD}} = \frac{{CM}}{{DM}}\)

\( \Rightarrow \frac{{NA}}{{ND}} = \frac{{CM}}{{DM}}\)

Hay \(\frac{{NA + ND}}{{ND}} = \frac{{CM + DM}}{{DM}}\)

\( \Leftrightarrow \frac{{AD}}{{ND}} = \frac{{CD}}{{DM}} \Leftrightarrow \frac{{ND}}{{AD}} = \frac{{DM}}{{CD}}\)

Þ MN // AC (định lý Ta-let) (đpcm).

Bình luận


Bình luận

Trần Ngọc Thiên Trang
05:45 - 20/04/2025

cho nửa đường tròn (O,R) đường kính AB gọi Ax By là các tiếp tuyến của nửa đường tròn Ax By và nửa đường tròn thuộc cùng nửa mặt phẳng có bờ là đường thẳng chứa AB từ điểm M trên nửa đường tròn m khác a m khác b Vẽ tiếp tuyến nửa đường tròn . Xét tứ giác ACMO nội tiếp

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác trong BD (K Î AB, D Î AC). Qua D kẻ đường thẳng vuông góc với AC cắt CK, AB lần lượt tại H và I.

a) Chứng minh CDKI là tứ giác nội tiếp.

b) Chứng minh AD.AC = DH.AB

c) Gọi F là trung điểm AD. Đường tròn tâm I bán kính ID cắt BC tại M (M khác B) và cắt AM tại N (N khác M). Chứng minh B, N, F thẳng hàng.

Xem đáp án » 13/07/2024 26,950

Câu 2:

Một trường trung học phổ thông có 4 học sinh giỏi khối 12, có 5 học sinh giỏi khối 11, có 6 học sinh giỏi khối 10. Hỏi có bao nhiêu cách sắp xếp 15 học sinh trên thành một hàng ngang để đón đoàn đại biểu, nếu các học sinh ở cùng một khối thì xếp gần nhau.

Xem đáp án » 13/07/2024 17,265

Câu 3:

Cho hàm số \(y = \frac{1}{2}{x^2}\).

a) Vẽ đồ thị (P) của hàm số.

b) Tìm trên (P) những điểm cách đều hai trục tọa độ (không trùng với O).

c) Tìm trên (P) những điểm có tung độ bằng \(\frac{9}{2}\).

Xem đáp án » 13/07/2024 11,061

Câu 4:

Cho tam giác ABC, AB = AC. Tia phân giác của góc A cắt BC tại M.

a) Chứng minh: ∆AMB = ∆AMC.

b) Chứng minh M là trung điểm của cạnh BC.

c) K là một điểm bất kì trên đoạn thẳng AM, đường thẳng CK cắt cạnh AB tại I. Vẽ IH vuông góc với BC tại H. Chứng minh \(\widehat {BAC} = 2\widehat {BIH}\).

Xem đáp án » 13/07/2024 10,731

Câu 5:

Cho tam giác ABC cân tại A, M trung điểm BC, H là hình chiếu của M trên AC, E là trung điểm MH . Chứng minh AE vuông góc với BH

Xem đáp án » 13/07/2024 10,179

Câu 6:

Vẽ đồ thị hàm số y = x2 − 3x + 2

Xem đáp án » 13/07/2024 9,333

Câu 7:

Cho ∆ABC cân tại A. H là trung điểm của BC. D là hình chiếu của H trên AC, M là trung điểm của HD. Chứng minh AM vuông góc BD.

Xem đáp án » 13/07/2024 7,261
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua