Câu hỏi:

19/08/2025 4,034 Lưu

Cho parabol (P): \(y = \frac{1}{2}{x^2}\) và đường thẳng (d): y = mx + 2.

a) Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại 2 điểm phân biệt.

b) Gọi x1, x2 lần lượt là hoành độ các giao điểm của đường thẳng (d) và parabol (P). Tìm giá trị của m để \[\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} = - 3\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Xét phương trình hoành độ giao điểm:

\(\frac{1}{2}{x^2} = mx + 2\)

\( \Leftrightarrow {x^2} = 2mx + 4\)

\( \Leftrightarrow {x^2} - 2mx - 4 = 0\)

\(\Delta ' = {m^2} + 4 > 0,\;\forall m\)

Suy ra đường thẳng (d) và parabol (P) luôn cắt nhau tại 2 điểm phân biệt.

b) Theo Viét:

\(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = - 4\end{array} \right.\)

Ta có: \[\frac{{{x_1}}}{{{x_2}}} + \frac{{{x_2}}}{{{x_1}}} = - 3\]

\[ \Leftrightarrow \frac{{{x_1}^2 + {x_2}^2}}{{{x_1}{x_2}}} = - 3\]

\[ \Leftrightarrow \frac{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}}}{{{x_1}{x_2}}} = - 3\]

\( \Leftrightarrow \frac{{4{m^2} + 8}}{{ - 4}} = - 3\)

\( \Leftrightarrow {m^2} = 1 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - 1\end{array} \right.\)

Vậy m = ±1 là các giá trị của m thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác  (ảnh 1)

a) Ta có :

DI vuông CD (gt) Þ \(\widehat {IDC} = 90^\circ \)

CK vuông KI (gt) Þ \(\widehat {IKC} = 90^\circ \)

\( \Rightarrow \widehat {IDC} = \widehat {IKC} = 90^\circ \)

Mà 2 góc này ở 2 đỉnh kề nhau cùng nhìn cạnh CI

Suy ra CDIK là tứ giác nội tiếp.

b) Ta có:

\(\widehat {HCD} = \widehat {ABC}\) (cùng phụ góc \(\widehat {KCB}\))

Xét ∆HCD và ∆ABC có:

\(\widehat {HCD} = \widehat {ABC}\) (cmt )

\(\widehat {HDC} = \widehat {ACB} = 90^\circ \)

Suy ra ∆ABC ∆HCD (g.g)

\( \Rightarrow \frac{{BC}}{{DC}} = \frac{{AC}}{{HD}}\) (2 cạnh tương ứng tỉ lệ )

Mà BD là đường phân giác của \(\widehat {ABC}\) (gt)

\( \Rightarrow \frac{{AB}}{{AD}} = \frac{{AC}}{{HD}}\)

Suy ra AD.AC = DH.AB (đpcm)

c) Gọi giao điểm của BN với AD là F'.

Ta có: AC là tiếp tuyến của (I;ID) nên \(\widehat {CDM} = \widehat {CBD} = \widehat {ABD}\)

\( \Rightarrow \widehat {MDB} = \widehat {CDB} - \widehat {CDM} = \widehat {CDB} - \widehat {ABD} = \widehat {CAB}\)

\(\widehat {MDB} = \widehat {MNB} = \widehat {ANF'} \Rightarrow \widehat {ANF'} = \widehat {CAB}\)

Từ đó ∆F'AN ∆F'BA (g.g)

\( \Rightarrow \frac{{F'A}}{{F'N}} = \frac{{F'B}}{{F'A}} \Rightarrow F'{A^2} = F'B\,.\,F'N\)

Mặt khác, vì F'D là tiếp tuyến của (I, ID) nên F'D2 = F'B.F'N

Þ F'A = F'D Þ F' ≡ F.

Từ đó ta có đpcm.

Lời giải

a) Hàm số \(y = \frac{1}{2}{x^2}\).

Bảng giá trị:

x

– 2

– 1

0

1

2

y

2

\(\frac{1}{2}\)

0

\(\frac{1}{2}\)

2

Đồ thị (P) của hàm số \(y = \frac{1}{2}{x^2}\)

Cho hàm số y = 1/2x^2 a) vẽ đồ thị (P) của hàm số. b) Tìm trên (P) những điểm (ảnh 1)

b) Điểm cách đều hai trục tọa độ nằm trên đường thẳng: y = x hoặc y = x.

Xét phương trình hoành độ giao điểm của parabol (P)\(y = \frac{1}{2}{x^2}\) và đường thẳng y = x:

\(\frac{1}{2}{x^2} = x\) x2 – 2x = 0 x(x – 2) = 0 \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2}\end{array}} \right.\)

• Với x = 0 y = 0 điểm O (0; 0)

• Với x = 2 y = 2 điểm A (2; 2)

Xét phương trình hoành độ giao điểm của parabol (P)\(y = \frac{1}{2}{x^2}\) và đường thẳng y = x:

\(\frac{1}{2}{x^2} = - x\) x2 + 2x = 0 x(x + 2) = 0 \( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = - 2}\end{array}} \right.\)

Với x = 0 y = 0 điểm O (0; 0)

Với x = 2 y = 2 điểm B (2; 2)

Vậy có hai đểm A (2; 2) và B (2; 2) trên (P) cách đều hai trục tọa độ.

c) Gọi điểm\(M\left( {{x_0};\,\,\frac{9}{2}} \right)\) (P)

\( \Rightarrow \frac{9}{2} = \frac{1}{2}{\left( {{x_0}} \right)^2} \Leftrightarrow {\left( {{x_0}} \right)^2} = 9\)\[ \Leftrightarrow {x_0} = \left| 3 \right| \Rightarrow {x_0} = \pm 3\] ;

Vậy \({M_1}\left( {3;\,\,\frac{9}{2}} \right)\); \({M_2}\left( { - 3;\,\,\frac{9}{2}} \right) \in \left( P \right)\) .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP