Câu hỏi:

13/07/2024 4,185

Cho tam giác ABC có AB < AC. AH là đường cao. Gọi M, N, K lần lượt là trung điểm của AB, AC, BC.

a) Chứng minh: MNKH là hình thang cân

b) Trên AH và AK lần lượt lấy điểm E và D sao cho H là trung điểm của AE và K là trung điểm của AD. Chứng minh tứ giác BCDE là hình thang cân

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC có AB < AC. AH là đường cao. Gọi M, N, K lần lượt là trung (ảnh 1)

a) Xét ΔABC có:

M là trung điểm AB

N là trung điểm AC

Þ MN là đường trung bình của tam giác ABC

Þ MN // BC và \(MN = \frac{{BC}}{2}\)

Xét ΔAHC có HN là trung tuyến 

Þ \(HN = AN = NC = \frac{{AC}}{2}\)

Xét ΔABC có:

M là trung điểm AB 

K là trung điểm BC 

Þ MK là đường trung bình 

Þ MK // AC và \(MK = \frac{{AC}}{2}\)

Þ MK = NH 

Xét tứ giác MNKH có: 

MN // HK

MK = NH 

Suy ra MNKH là hình thang cân 

b) Xét ΔAED có:

H là trung điểm AE

K là trung điểm AD

Þ HK là đường trung bình 

Þ HK // ED 

Xét ΔACE có :

HC là trung trực 

ÞΔACE cân tại C Þ AC = CE

Xét tứ giác ACDB có:

K là trung điểm BC 

K là trung điểm AD

Þ ACDB là hình hình hành 

Þ AC = BD 

Mà CE = AC (cmt)

Þ BD =CE

Mà BC // ED

Þ BCDE là hình thang cân.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác trong BD (K Î AB, D Î AC). Qua D kẻ đường thẳng vuông góc với AC cắt CK, AB lần lượt tại H và I.

a) Chứng minh CDKI là tứ giác nội tiếp.

b) Chứng minh AD.AC = DH.AB

c) Gọi F là trung điểm AD. Đường tròn tâm I bán kính ID cắt BC tại M (M khác B) và cắt AM tại N (N khác M). Chứng minh B, N, F thẳng hàng.

Xem đáp án » 13/07/2024 33,432

Câu 2:

Một trường trung học phổ thông có 4 học sinh giỏi khối 12, có 5 học sinh giỏi khối 11, có 6 học sinh giỏi khối 10. Hỏi có bao nhiêu cách sắp xếp 15 học sinh trên thành một hàng ngang để đón đoàn đại biểu, nếu các học sinh ở cùng một khối thì xếp gần nhau.

Xem đáp án » 13/07/2024 18,772

Câu 3:

Cho hàm số \(y = \frac{1}{2}{x^2}\).

a) Vẽ đồ thị (P) của hàm số.

b) Tìm trên (P) những điểm cách đều hai trục tọa độ (không trùng với O).

c) Tìm trên (P) những điểm có tung độ bằng \(\frac{9}{2}\).

Xem đáp án » 13/07/2024 15,141

Câu 4:

Cho tam giác ABC, AB = AC. Tia phân giác của góc A cắt BC tại M.

a) Chứng minh: ∆AMB = ∆AMC.

b) Chứng minh M là trung điểm của cạnh BC.

c) K là một điểm bất kì trên đoạn thẳng AM, đường thẳng CK cắt cạnh AB tại I. Vẽ IH vuông góc với BC tại H. Chứng minh \(\widehat {BAC} = 2\widehat {BIH}\).

Xem đáp án » 13/07/2024 11,624

Câu 5:

Cho tam giác ABC cân tại A, M trung điểm BC, H là hình chiếu của M trên AC, E là trung điểm MH . Chứng minh AE vuông góc với BH

Xem đáp án » 13/07/2024 10,567

Câu 6:

Vẽ đồ thị hàm số y = x2 − 3x + 2

Xem đáp án » 13/07/2024 9,838

Câu 7:

Cho ∆ABC cân tại A. H là trung điểm của BC. D là hình chiếu của H trên AC, M là trung điểm của HD. Chứng minh AM vuông góc BD.

Xem đáp án » 13/07/2024 7,571
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay