Câu hỏi:
13/07/2024 2,717Cho tam giác ABC có AB < AC. AH là đường cao. Gọi M, N, K lần lượt là trung điểm của AB, AC, BC.
a) Chứng minh: MNKH là hình thang cân
b) Trên AH và AK lần lượt lấy điểm E và D sao cho H là trung điểm của AE và K là trung điểm của AD. Chứng minh tứ giác BCDE là hình thang cân
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Xét ΔABC có:
M là trung điểm AB
N là trung điểm AC
Þ MN là đường trung bình của tam giác ABC
Þ MN // BC và \(MN = \frac{{BC}}{2}\)
Xét ΔAHC có HN là trung tuyến
Þ \(HN = AN = NC = \frac{{AC}}{2}\)
Xét ΔABC có:
M là trung điểm AB
K là trung điểm BC
Þ MK là đường trung bình
Þ MK // AC và \(MK = \frac{{AC}}{2}\)
Þ MK = NH
Xét tứ giác MNKH có:
MN // HK
MK = NH
Suy ra MNKH là hình thang cân
b) Xét ΔAED có:
H là trung điểm AE
K là trung điểm AD
Þ HK là đường trung bình
Þ HK // ED
Xét ΔACE có :
HC là trung trực
ÞΔACE cân tại C Þ AC = CE
Xét tứ giác ACDB có:
K là trung điểm BC
K là trung điểm AD
Þ ACDB là hình hình hành
Þ AC = BD
Mà CE = AC (cmt)
Þ BD =CE
Mà BC // ED
Þ BCDE là hình thang cân.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác trong BD (K Î AB, D Î AC). Qua D kẻ đường thẳng vuông góc với AC cắt CK, AB lần lượt tại H và I.
a) Chứng minh CDKI là tứ giác nội tiếp.
b) Chứng minh AD.AC = DH.AB
c) Gọi F là trung điểm AD. Đường tròn tâm I bán kính ID cắt BC tại M (M khác B) và cắt AM tại N (N khác M). Chứng minh B, N, F thẳng hàng.
Câu 2:
Một trường trung học phổ thông có 4 học sinh giỏi khối 12, có 5 học sinh giỏi khối 11, có 6 học sinh giỏi khối 10. Hỏi có bao nhiêu cách sắp xếp 15 học sinh trên thành một hàng ngang để đón đoàn đại biểu, nếu các học sinh ở cùng một khối thì xếp gần nhau.
Câu 3:
Cho tam giác ABC cân tại A, M trung điểm BC, H là hình chiếu của M trên AC, E là trung điểm MH . Chứng minh AE vuông góc với BH
Câu 4:
Cho tam giác ABC, AB = AC. Tia phân giác của góc A cắt BC tại M.
a) Chứng minh: ∆AMB = ∆AMC.
b) Chứng minh M là trung điểm của cạnh BC.
c) K là một điểm bất kì trên đoạn thẳng AM, đường thẳng CK cắt cạnh AB tại I. Vẽ IH vuông góc với BC tại H. Chứng minh \(\widehat {BAC} = 2\widehat {BIH}\).
Câu 5:
Chứng minh: \(\overrightarrow {AB} - \overrightarrow {CD} = \overrightarrow {AC} - \overrightarrow {BD} \)
Câu 6:
Cho ∆ABC cân tại A. H là trung điểm của BC. D là hình chiếu của H trên AC, M là trung điểm của HD. Chứng minh AM vuông góc BD.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức cơ bản, nâng cao có lời giải (P1)
về câu hỏi!