Câu hỏi:
12/07/2024 915Câu hỏi trong đề: Chuyên đề Tin Học 11 KNTT Bài 4. Tháp Hà Nội có đáp án !!
Quảng cáo
Trả lời:
1. Di chuyển 3 đĩa từ cọc 1 sang cọc 3:
1.1 Di chuyển 2 đĩa từ cọc 1 sang cọc 2:
- Di chuyển 1 đĩa từ cọc 1 sang cọc 3.
- Di chuyển 1 đĩa từ cọc 1 sang cọc 2.
- Di chuyển 1 đĩa từ cọc 3 sang cọc 2.
1.2. Di chuyển 1 đĩa từ cọc 1 sang cọc 3.
1.3. Di chuyển 2 đĩa từ cọc 2 sang cọc 3:
- Di chuyển 1 đĩa từ cọc 2 sang cọc 1.
- Di chuyển 1 đĩa từ cọc 2 sang cọc 3
- Di chuyển 1 đĩa từ cọc 1 sang cọc 3.
2. Di chuyển 1 đĩa từ cọc 1 sang cọc 2.
3. Di chuyển 3 đĩa từ cọc 3 sang cọc 2:
3.1 Di chuyển 2 đĩa từ cọc 3 sang cọc 1:
- Di chuyển 1 đĩa từ cọc 3 sang cọc 2. 3.1.2
- Di chuyển 1 đĩa từ cọc 3 sang cọc 1.
- Di chuyển 1 đĩa từ cọc 2 sang cọc 1.
3.2 Di chuyển 1 đĩa từ cọc 3 sang cọc 2.
3.3 Di chuyển 2 đĩa từ cọc 1 sang cọc 2:
- Di chuyển 1 đĩa từ cọc 1 sang cọc 3.
- Di chuyển 1 đĩa từ cọc 1 sang cọc 2.
- Di chuyển 1 đĩa từ cọc 3 sang cọc 2.
Vậy, tổng số bước để di chuyển 4 đĩa theo quy trình trên là:
- Di chuyển 3 đĩa từ cọc 1 sang cọc 2: 7 bước
- Di chuyển đĩa còn lại từ cọc 1 sang cọc 3: 1 bước
- Di chuyển 3 đĩa từ cọc 2 sang cọc 3: 7 bước
Vậy tổng số bước cần thiết để di chuyển 4 đĩa trong bài toán tháp Hà Nội là 15 bước.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
- Nếu chỉ có một đĩa (n=1), H(n) = 1.
- Nếu có n đĩa, để chuyển tất cả các đĩa từ tháp ban đầu sang tháp đích, ta phải thực hiện các bước sau:
Chuyển n-1 đĩa từ tháp ban đầu sang tháp trung gian.
Chuyển đĩa cuối cùng (đĩa lớn nhất) từ tháp ban đầu sang tháp đích.
Chuyển n-1 đĩa từ tháp trung gian sang tháp đích.
Số bước chuyển tất cả các đĩa là H(n) = 2 * H(n-1) + 1.
- Ta sẽ chứng minh công thức này bằng phương pháp quy nạp toán học:
Bước 1: Giả sử công thức đúng với n-1, tức là H(n-1) = 2^(n-1) - 1
Bước 2: Chứng minh công thức đúng với n, tức là H(n) = 2^n - 1
Ta có:
H(n) = 2 * H(n-1) + 1 (theo công thức đề bài)
= 2 * (2^(n-1) - 1) + 1 (theo giả sử ở bước 1)
= 2^n - 2 + 1
= 2^n - 1
Vậy ta đã chứng minh được công thức đúng với mọi n.
Để tính H(64), ta áp dụng công thức đã chứng minh:
H(64) = 2^64 - 1
= 18446744073709551615
Vậy H(64) = 18446744073709551615 trùng với con số ở trên bài báo
Lời giải
* Với n = 1, bài toán trở nên rất đơn giản, chỉ cần chuyển đĩa từ cột xuất phát sang cột đích là xong
* Với n = 2, ta sẽ thực hiện theo các bước sau:
* Với n = 3, ta sẽ thực hiện theo các bước sau:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 4 đề thi cuối học kì 2 Tin 11 Kết nối tri thức có đáp án (Đề 1)
15 câu Trắc nghiệm Tin học 11 Kết nối tri thức Bài 25 có đáp án
Bộ 4 đề thi cuối học kì 2 Tin 11 Kết nối tri thức có đáp án (Đề 2)
15 câu Trắc nghiệm Tin học 11 Kết nối tri thức Bài 26 có đáp án
15 câu Trắc nghiệm Tin học 11 Kết nối tri thức Bài 27 có đáp án
15 câu Trắc nghiệm Tin học 11 Kết nối tri thức Bài 28 có đáp án
15 câu Trắc nghiệm Tin học 11 Cánh diều Bài 1: Một số thao tác chỉnh sửa ảnh và hỗ trợ chỉnh sửa ảnh có đáp án
15 câu Trắc nghiệm Tin học 11 Kết nối tri thức Bài 24 có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận