Câu hỏi:

12/07/2024 617

Hãy chứng minh công thức Hn = 2n1 bằng quy nạp toán học. Hãy tính H(64) và so sánh với con số các bước đã được đưa ra trong tờ quảng cáo của trò chơi vào năm 1883.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

- Nếu chỉ có một đĩa (n=1), H(n) = 1.

- Nếu có n đĩa, để chuyển tất cả các đĩa từ tháp ban đầu sang tháp đích, ta phải thực hiện các bước sau:

Chuyển n-1 đĩa từ tháp ban đầu sang tháp trung gian.

Chuyển đĩa cuối cùng (đĩa lớn nhất) từ tháp ban đầu sang tháp đích.

Chuyển n-1 đĩa từ tháp trung gian sang tháp đích.

Số bước chuyển tất cả các đĩa là H(n) = 2 * H(n-1) + 1.

- Ta sẽ chứng minh công thức này bằng phương pháp quy nạp toán học:

Bước 1: Giả sử công thức đúng với n-1, tức là H(n-1) = 2^(n-1) - 1

Bước 2: Chứng minh công thức đúng với n, tức là H(n) = 2^n - 1

Ta có:

H(n) = 2 * H(n-1) + 1 (theo công thức đề bài)

= 2 * (2^(n-1) - 1) + 1 (theo giả sử ở bước 1)

= 2^n - 2 + 1

= 2^n - 1

Vậy ta đã chứng minh được công thức đúng với mọi n.

Để tính H(64), ta áp dụng công thức đã chứng minh:

H(64) = 2^64 - 1

= 18446744073709551615

Vậy H(64) = 18446744073709551615 trùng với con số ở trên bài báo

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1. Di chuyển 3 đĩa từ cọc 1 sang cọc 3:

1.1 Di chuyển 2 đĩa từ cọc 1 sang cọc 2:

- Di chuyển 1 đĩa từ cọc 1 sang cọc 3.

- Di chuyển 1 đĩa từ cọc 1 sang cọc 2.

- Di chuyển 1 đĩa từ cọc 3 sang cọc 2.

1.2. Di chuyển 1 đĩa từ cọc 1 sang cọc 3.

1.3. Di chuyển 2 đĩa từ cọc 2 sang cọc 3:

- Di chuyển 1 đĩa từ cọc 2 sang cọc 1.

- Di chuyển 1 đĩa từ cọc 2 sang cọc 3

- Di chuyển 1 đĩa từ cọc 1 sang cọc 3.

2. Di chuyển 1 đĩa từ cọc 1 sang cọc 2.

3. Di chuyển 3 đĩa từ cọc 3 sang cọc 2:

3.1 Di chuyển 2 đĩa từ cọc 3 sang cọc 1:

- Di chuyển 1 đĩa từ cọc 3 sang cọc 2. 3.1.2

- Di chuyển 1 đĩa từ cọc 3 sang cọc 1.

- Di chuyển 1 đĩa từ cọc 2 sang cọc 1.

3.2 Di chuyển 1 đĩa từ cọc 3 sang cọc 2.

3.3 Di chuyển 2 đĩa từ cọc 1 sang cọc 2:

- Di chuyển 1 đĩa từ cọc 1 sang cọc 3.

- Di chuyển 1 đĩa từ cọc 1 sang cọc 2.

- Di chuyển 1 đĩa từ cọc 3 sang cọc 2.

Vậy, tổng số bước để di chuyển 4 đĩa theo quy trình trên là:

- Di chuyển 3 đĩa từ cọc 1 sang cọc 2: 7 bước

- Di chuyển đĩa còn lại từ cọc 1 sang cọc 3: 1 bước

- Di chuyển 3 đĩa từ cọc 2 sang cọc 3: 7 bước

Vậy tổng số bước cần thiết để di chuyển 4 đĩa trong bài toán tháp Hà Nội là 15 bước.Top of Form

Lời giải

* Với n = 1, bài toán trở nên rất đơn giản, chỉ cần chuyển đĩa từ cột xuất phát sang cột đích là xong

Đọc, tìm hiểu bài toán Tháp Hà Nội và thực hiện giải trò chơi này với số lượng đĩa  (ảnh 1)

* Với n = 2, ta sẽ thực hiện theo các bước sau:

Đọc, tìm hiểu bài toán Tháp Hà Nội và thực hiện giải trò chơi này với số lượng đĩa  (ảnh 2)

* Với n = 3, ta sẽ thực hiện theo các bước sau:

Đọc, tìm hiểu bài toán Tháp Hà Nội và thực hiện giải trò chơi này với số lượng đĩa  (ảnh 3)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP