Câu hỏi:
12/07/2024 3,083Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
Lời giải:
Trên nửa mặt phẳng bờ BC có chứa A vẽ \(\Delta BCN\) đều
Xét ∆ABN và ∆CAN có:
AB = AC (Do ∆ABC cân tại A)
BN = CN (do \(\Delta BCN\) đều)
AN chung
Do đó, ∆ABN = ∆ACN (c.c.c)
\( \Rightarrow \widehat {BNA} = \widehat {CNA} = \frac{{\widehat {BNC}}}{2} = \frac{{60^\circ }}{2} = 30^\circ \).
Tam giác ABC cân tại A có \(\widehat A = 100^\circ \) nên \(\widehat {BCA} = \widehat {ABC} = \frac{{180^\circ - 100^\circ }}{2} = 40^\circ \).
Mặt khác, \(\widehat {BCA} + \widehat {ACN} = \widehat {BCN}\)\( \Rightarrow 40^\circ + \widehat {ACN} = 60^\circ \Rightarrow \widehat {ACN} = 20^\circ \).
\(\widehat {MCA} + \widehat {MCB} = \widehat {ACB}\)\( \Rightarrow \widehat {MCA} + 20^\circ = 40^\circ \) \( \Rightarrow \widehat {MCA} = 20^\circ \)
Xét ∆CBM và ∆CAN có:
BC = CN (do \(\Delta BCN\) đều)
\(\widehat {MBC} = \widehat {CNA} = 30^\circ ,\widehat {MCB} = \widehat {ACN} = 20^\circ \)
Do đó, ∆CBM = ∆CNA (g.c.g)
⇒ CM = CA
⇒ ∆CMA cân tại C
⇒ \(\widehat {MAC} = \widehat {AMC}\)
⇒ \(\widehat {MAC} = \left( {180^\circ - \widehat {MCA}} \right):2 = 80^\circ \)
Ta có: \(\widehat {MBC} + \widehat {ABM} = \widehat {ABC}\).
\( \Rightarrow \widehat {ABM} = 40^\circ - 30^\circ = 10^\circ \)
Ta có: \(\widehat {MAB} + \widehat {MAC} = \widehat {BAC} \Rightarrow \widehat {BAM} = 100^\circ - 80^\circ = 20^\circ \)
Xét ∆AMB có: \(\widehat {AMB} + \widehat {MAB} + \widehat {ABM} = 180^\circ \)
\( \Rightarrow \widehat {AMB} = 180^\circ - 10^\circ - 20^\circ = 150^\circ \)
Vậy \(\widehat {AMB} = 150^\circ \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Câu 2:
Câu 3:
Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.
a. Chứng minh tứ giác IEKB nội tiếp.
b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).
c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).
d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.
Câu 4:
Câu 5:
Câu 6:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận