Câu hỏi:

12/07/2024 414

Cho ∆ABC có \(\widehat A = 75^\circ ,AB = 10cm\). Tỉ lượng \(\frac{{\widehat B}}{{\widehat C}} = \frac{4}{3}\). Tính CA, CB, \({S_{\Delta ABC}}\).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Media VietJack

Đặt B = \(\widehat B\), C = \(\widehat C\).

Theo định lí tổng 3 góc trong tam giác ABC ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \).

Suy ra \(\widehat B + \widehat C = 180^\circ - \widehat A = 180^\circ - 75^\circ = 105^\circ \) hay B + C = 105°.

Theo đề bài ta có: \(\frac{B}{C} = \frac{4}{3} \Rightarrow \frac{B}{4} = \frac{C}{3} = \frac{{B + C}}{{4 + 3}} = \frac{{105^\circ }}{7} = 15^\circ \).

\(\frac{B}{4} = 15 \Rightarrow \widehat B = 60^\circ ;\frac{C}{3} = 15 \Rightarrow \widehat C = 45^\circ \).

Gọi AH là đường cao của tam giác ABC.  

Ta có: \(\sin B = \frac{{AH}}{{AB}} \Rightarrow AH = \sin B.AB \Rightarrow AH = \sin 60^\circ .10 = 5\sqrt 3 cm\)

\(\cos B = \frac{{HB}}{{AB}} \Rightarrow HB = \cos B.AB \Rightarrow HB = \cos 60^\circ .10 = 5cm\)

\(\sin C = \frac{{AH}}{{AC}} \Rightarrow AC = \frac{{AH}}{{\sin C}} \Rightarrow AC = \frac{{5\sqrt 3 }}{{\sin 45^\circ }} = 5\sqrt 6 cm\)

\(\cos C = \frac{{HC}}{{AC}} \Rightarrow HC = \cos C.AC \Rightarrow HC = \cos 45^\circ .5\sqrt 6 = 5\sqrt 3 cm\)

Ta lại có: BC = HB + HC = \(5 + 5\sqrt 3 \approx 14cm\).

Diện tích tam giác ABC là \({S_{\Delta ABC}} = \frac{1}{2}AH.BC \approx \frac{1}{2}.5\sqrt 3 .14 = 35\sqrt 3 \) (cm2).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:

a) ∆AOB cân tại O.

b) ∆ABD = ∆BAC.

c) EC = ED.

d) OE là đường trung trực chung của AB và CD.

Xem đáp án » 12/07/2024 43,035

Câu 2:

Cho ∆ABC có a = 7, b = 8, c = 5. Tính số đo góc A, diện tích S của tam giác ABC, đường cao kẻ từ đỉnh A là ha và bán kính R của đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 12/07/2024 23,379

Câu 3:

Cho ∆ABC biết b = 7, c = 5, \(\cos A = \frac{3}{5}\). Tính S, R, r.

Xem đáp án » 12/07/2024 14,623

Câu 4:

Cho ∆ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác. Chứng minh tứ giác BCDE là hình thang cân.

Xem đáp án » 12/07/2024 12,642

Câu 5:

Cho \(\cos a = \frac{5}{{13}};\frac{{3\pi }}{2} < a < 2\pi \). Tính giá trị của sina; tana; cota.

Xem đáp án » 12/07/2024 8,666

Câu 6:

Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.

a. Chứng minh tứ giác IEKB nội tiếp.

b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).

c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).

d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.

Xem đáp án » 12/07/2024 8,290

Câu 7:

Phân tích đa thức thành nhân tử \({x^3} - 19x - 30\).

Xem đáp án » 12/07/2024 7,620

Bình luận


Bình luận