Câu hỏi:
12/07/2024 343Cho ∆ABC cân tại A. Lấy M bất kì thuộc cạnh BC, kẻ MD ⊥ AB tại D, ME ⊥ AC tại E. Gọi D' là điểm đối xứng của D qua BC.
a. Chứng minh ba điểm E, M, D' thẳng hàng.
b. Kẻ BF ⊥ AC tại F. Chứng minh ED' = BF.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
a. D’ đối xứng với D qua BC
⇒ DD’ ⊥ BC và ID’ = ID (với I là giao điểm của DD’ và BC)
⇒ ∆DMD’ cân tại M.
Do đó đường cao MI đồng thời là phân giác của tam giác DMD'.
Suy ra \(\widehat {{M_1}} = \widehat {{M_2}}\)
Mà \(\widehat {{M_1}} = \widehat {{M_3}}\)(cùng phụ với \(\widehat B = \widehat C\))
\( \Rightarrow \widehat {{M_2}} = \widehat {{M_3}}\) mà \(\widehat {{M_3}} + \widehat {EMB} = 180^\circ \)
\( \Rightarrow \widehat {{M_2}} + \widehat {EMB} = 180^\circ \)
Vậy E, M, D’ thẳng hàng.
b. Dễ thấy ∆BDM = ∆BD’M (c.g.c)
\( \Rightarrow \widehat {BD'M} = \widehat {BDM} = 90^\circ \)hay D’B ⊥ D’E ⇒ D’B // EF
Lại có BF // D’E (⊥ AC) nên BFED’ là hình thang có 2 cạnh bên song song.
⇒ ED’ = BF.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 7:
Cho ∆ABC có BC = a, CA = b, AB = c.
Chứng minh rằng \({b^2} - {c^2} = a\left( {b.cosC - c.cosB} \right)\).
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!