Câu hỏi:

12/07/2024 28,106

Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H lên AB, AC.

a) Chứng minh AD . AB = AE . AC.

b) Chứng minh \(\frac{{BH}}{{HC}} = {\left( {\frac{{AB}}{{AC}}} \right)^2}\).

c) Cho BH = 4 cm, CH = 9 cm. Tính DE và \(\widehat {A{\rm{D}}E}\) (làm tròn đến độ).

d) Gọi M là trung điểm của BH, N là trung điểm của CH. Tính SDENM.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Xét ΔABH vuông tại H có HD AB

Suy ra AH2 = AD . AB (hệ thức lượng trong tam giác vuông)

Xét ΔAEH vuông tại H có HE AC

Suy ra AH2 = AE . AC (hệ thức lượng trong tam giác vuông)

Mà AH2 = AD . AB (chứng minh trên)

Suy ra AD . AB = AE . AC

b) ΔABC vuông tại A nên AB2 + AC2 = BC2 (định lý Pytago)

Xét ΔABC vuông tại A có AH BC

Suy ra AB2 = BH . BC (hệ thức lượng trong tam giác vuông)

AB2 . BC = BH . BC2

\( \Leftrightarrow \frac{{BH}}{{BC}} = \frac{{A{B^2}}}{{B{C^2}}}\)

\( \Leftrightarrow \frac{{BH}}{{BC - BH}} = \frac{{A{B^2}}}{{B{C^2} - A{B^2}}}\)

\( \Leftrightarrow \frac{{BH}}{{HC}} = \frac{{A{B^2}}}{{A{C^2}}} = {\left( {\frac{{AB}}{{AC}}} \right)^2}\)

c) Xét ΔABC vuông tại A có AH BC

Suy ra AH2 = BH . HC (hệ thức lượng trong tam giác vuông)

Hay AH2 = 4 . 9 = 36

Suy ra AH = 6

Xét tứ giác ADHE có \(\widehat {DAE} = \widehat {A{\rm{D}}H} = \widehat {A{\rm{E}}H} = 90^\circ \)

Suy ra ADHE là hình chữ nhật

Mà AH, DE là hai đường chéo

Suy ra DE = AH = 6 (cm)

ΔABH vuông tại H nên HB2 + AH2 = BA2 (định lý Pytago)

Hay 42 + 62 = AB2

Suy ra \(AB = 2\sqrt {13} \)

Xét ΔABH vuông tại H có HD AB

Suy ra AH2 = AD . AB (hệ thức lượng trong tam giác vuông)

Hay \({6^2} = A{\rm{D }}.{\rm{ }}2\sqrt {13} \)

Suy ra \(A{\rm{D = }}\frac{{18}}{{\sqrt {13} }}\)

Xét tam giác ADE vuông tại A có

\({\rm{cos}}\widehat {A{\rm{D}}E} = \frac{{A{\rm{D}}}}{{DE}} = \frac{{18}}{{6\sqrt {13} }} = \frac{3}{{\sqrt {13} }}\)

Suy ra \(\widehat {A{\rm{D}}E} \approx 33^\circ \).

d) Vì ra ADHE là hình chữ nhật có AH, DE là hai đường chéo

Suy ra AH cắt DE tại trung điểm O của mỗi đường

Mà AH = DE

Do đó OH = OD

Suy ra tam giác OHD cân tại O

Suy ra \(\widehat {OH{\rm{D}}} = \widehat {O{\rm{D}}H}\)

Xét ΔHBD vuông tại D DM là đường trung tuyến ứng với cạnh huyền

Suy ra \(DM = MH = \frac{1}{2}BH = \frac{1}{2}.4 = 2\)

Do đó ΔDMH cân tại M

Suy ra \(\widehat {MDH} = \widehat {MH{\rm{D}}}\)

\(\widehat {DHA} + \widehat {MH{\rm{D}}} = \widehat {AHB} = 90^\circ \)\(\widehat {AH{\rm{D}}} = \widehat {{\rm{ED}}H}\)(chứng minh trên)

Suy ra \(\widehat {H{\rm{D}}E} + \widehat {M{\rm{DH}}} = \widehat {M{\rm{D}}E} = 90^\circ \)

Hay MD DE.

Chứng minh tương tự ta có \(EN = \frac{{CH}}{2} = \frac{9}{2} = 4,5\)

\(\widehat {DEH} + \widehat {HEN} = \widehat {AHE} + \widehat {{\rm{EHN}}} = \widehat {AHC} = 90^\circ \)

Hay \(\widehat {DEN} = 90^\circ \)

Suy ra EN DE

Mà MD DE

Nên EN // MD (quan hệ từ vuông góc đến song song)

Xét tứ giác DENM có EN DE, EN // MD (chứng minh trên)

Suy ra DENM là hình thang vuông

Do đó \({S_{DENM}} = \frac{{\left( {DM + EN} \right).DE}}{2} = \frac{{\left( {2 + 4,5} \right).6}}{2} = 19,5\,\,\left( {c{m^2}} \right)\) .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD. Hai đầu M, N lần lượt là trung điểm của BC và AD. Tìm các tổng:

a) \(\overrightarrow {NC} + \overrightarrow {MC} ,\overrightarrow {AM} + \overrightarrow {C{\rm{D}}} ,\overrightarrow {A{\rm{D}}} + \overrightarrow {NC} \).

b) \(\overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {{\rm{AD}}} \).

Xem đáp án » 12/07/2024 20,499

Câu 2:

Cho đường tròn (O; R), đường kính AB. Vẽ dây AC sao cho \(\widehat {CAB} = 30^\circ \). Trên tia đối của tia BA, lấy điểm M sao cho BM = R. Chứng minh:

a) MC là tiếp tuyến của đường tròn (O).

b) MC2 = 3R2.

Xem đáp án » 12/07/2024 19,782

Câu 3:

Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại 2 điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.

a) Chứng minh OH . OM không đổi.

b) Chứng minh bốn điểm M, A, I, O cùng thuộc 1 đường tròn.

c) Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).

Xem đáp án » 12/07/2024 18,579

Câu 4:

Cho tam giác ABC cân tại A có các đường cao AH và BK cắt nhau tại I. Chứng minh:

a) Đường tròn đường kính AI đi qua K.

b) HK là tiếp tuyến của đường tròn đường kính AI.

Xem đáp án » 12/07/2024 18,010

Câu 5:

Cho đường thẳng d1: y = 3mx – m2 và d2: y = 3x + m – 2. Tìm m để d1 và d2 cắt nhau tại một điểm trên trục tung.

Xem đáp án » 12/07/2024 12,731

Câu 6:

Cho tam giác ABC có hai đường cao BD và CE cắt nhau tại H.

a) Chứng minh rằng bốn điểm A; D; H; E cùng nằm trên một đường tròn (gọi tâm của nó là O).

b) Gọi M là trung điểm của BC. Chứng minh ME là tiếp tuyến đường tròn (O).

Xem đáp án » 12/07/2024 7,336

Bình luận


Bình luận

Nam Vũ Ngọc
21:46 - 28/10/2024

Giúp b5 và b6 với ạ

Ảnh đính kèm
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store