Câu hỏi:
12/07/2024 22,262Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh AD . AB = AE . AC.
b) Chứng minh \(\frac{{BH}}{{HC}} = {\left( {\frac{{AB}}{{AC}}} \right)^2}\).
c) Cho BH = 4 cm, CH = 9 cm. Tính DE và \(\widehat {A{\rm{D}}E}\) (làm tròn đến độ).
d) Gọi M là trung điểm của BH, N là trung điểm của CH. Tính SDENM.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Xét ΔABH vuông tại H có HD ⊥ AB
Suy ra AH2 = AD . AB (hệ thức lượng trong tam giác vuông)
Xét ΔAEH vuông tại H có HE ⊥ AC
Suy ra AH2 = AE . AC (hệ thức lượng trong tam giác vuông)
Mà AH2 = AD . AB (chứng minh trên)
Suy ra AD . AB = AE . AC
b) Vì ΔABC vuông tại A nên AB2 + AC2 = BC2 (định lý Pytago)
Xét ΔABC vuông tại A có AH ⊥ BC
Suy ra AB2 = BH . BC (hệ thức lượng trong tam giác vuông)
⇔ AB2 . BC = BH . BC2
\( \Leftrightarrow \frac{{BH}}{{BC}} = \frac{{A{B^2}}}{{B{C^2}}}\)
\( \Leftrightarrow \frac{{BH}}{{BC - BH}} = \frac{{A{B^2}}}{{B{C^2} - A{B^2}}}\)
\( \Leftrightarrow \frac{{BH}}{{HC}} = \frac{{A{B^2}}}{{A{C^2}}} = {\left( {\frac{{AB}}{{AC}}} \right)^2}\)
c) Xét ΔABC vuông tại A có AH ⊥ BC
Suy ra AH2 = BH . HC (hệ thức lượng trong tam giác vuông)
Hay AH2 = 4 . 9 = 36
Suy ra AH = 6
Xét tứ giác ADHE có \(\widehat {DAE} = \widehat {A{\rm{D}}H} = \widehat {A{\rm{E}}H} = 90^\circ \)
Suy ra ADHE là hình chữ nhật
Mà AH, DE là hai đường chéo
Suy ra DE = AH = 6 (cm)
Vì ΔABH vuông tại H nên HB2 + AH2 = BA2 (định lý Pytago)
Hay 42 + 62 = AB2
Suy ra \(AB = 2\sqrt {13} \)
Xét ΔABH vuông tại H có HD ⊥ AB
Suy ra AH2 = AD . AB (hệ thức lượng trong tam giác vuông)
Hay \({6^2} = A{\rm{D }}.{\rm{ }}2\sqrt {13} \)
Suy ra \(A{\rm{D = }}\frac{{18}}{{\sqrt {13} }}\)
Xét tam giác ADE vuông tại A có
\({\rm{cos}}\widehat {A{\rm{D}}E} = \frac{{A{\rm{D}}}}{{DE}} = \frac{{18}}{{6\sqrt {13} }} = \frac{3}{{\sqrt {13} }}\)
Suy ra \(\widehat {A{\rm{D}}E} \approx 33^\circ \).
d) Vì ra ADHE là hình chữ nhật có AH, DE là hai đường chéo
Suy ra AH cắt DE tại trung điểm O của mỗi đường
Mà AH = DE
Do đó OH = OD
Suy ra tam giác OHD cân tại O
Suy ra \(\widehat {OH{\rm{D}}} = \widehat {O{\rm{D}}H}\)
Xét ΔHBD vuông tại D có DM là đường trung tuyến ứng với cạnh huyền
Suy ra \(DM = MH = \frac{1}{2}BH = \frac{1}{2}.4 = 2\)
Do đó ΔDMH cân tại M
Suy ra \(\widehat {MDH} = \widehat {MH{\rm{D}}}\)
Mà \(\widehat {DHA} + \widehat {MH{\rm{D}}} = \widehat {AHB} = 90^\circ \) và \(\widehat {AH{\rm{D}}} = \widehat {{\rm{ED}}H}\)(chứng minh trên)
Suy ra \(\widehat {H{\rm{D}}E} + \widehat {M{\rm{DH}}} = \widehat {M{\rm{D}}E} = 90^\circ \)
Hay MD ⊥ DE.
Chứng minh tương tự ta có \(EN = \frac{{CH}}{2} = \frac{9}{2} = 4,5\)
và \(\widehat {DEH} + \widehat {HEN} = \widehat {AHE} + \widehat {{\rm{EHN}}} = \widehat {AHC} = 90^\circ \)
Hay \(\widehat {DEN} = 90^\circ \)
Suy ra EN ⊥ DE
Mà MD ⊥ DE
Nên EN // MD (quan hệ từ vuông góc đến song song)
Xét tứ giác DENM có EN ⊥ DE, EN // MD (chứng minh trên)
Suy ra DENM là hình thang vuông
Do đó \({S_{DENM}} = \frac{{\left( {DM + EN} \right).DE}}{2} = \frac{{\left( {2 + 4,5} \right).6}}{2} = 19,5\,\,\left( {c{m^2}} \right)\) .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại 2 điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.
a) Chứng minh OH . OM không đổi.
b) Chứng minh bốn điểm M, A, I, O cùng thuộc 1 đường tròn.
c) Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).
Câu 2:
Cho hình bình hành ABCD. Hai đầu M, N lần lượt là trung điểm của BC và AD. Tìm các tổng:
a) \(\overrightarrow {NC} + \overrightarrow {MC} ,\overrightarrow {AM} + \overrightarrow {C{\rm{D}}} ,\overrightarrow {A{\rm{D}}} + \overrightarrow {NC} \).
b) \(\overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {{\rm{AD}}} \).
Câu 3:
Cho đường tròn (O; R), đường kính AB. Vẽ dây AC sao cho \(\widehat {CAB} = 30^\circ \). Trên tia đối của tia BA, lấy điểm M sao cho BM = R. Chứng minh:
a) MC là tiếp tuyến của đường tròn (O).
b) MC2 = 3R2.
Câu 4:
Câu 5:
Cho tam giác ABC cân tại A có các đường cao AH và BK cắt nhau tại I. Chứng minh:
a) Đường tròn đường kính AI đi qua K.
b) HK là tiếp tuyến của đường tròn đường kính AI.
Câu 6:
về câu hỏi!