Câu hỏi:
12/07/2024 28,106Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H lên AB, AC.
a) Chứng minh AD . AB = AE . AC.
b) Chứng minh \(\frac{{BH}}{{HC}} = {\left( {\frac{{AB}}{{AC}}} \right)^2}\).
c) Cho BH = 4 cm, CH = 9 cm. Tính DE và \(\widehat {A{\rm{D}}E}\) (làm tròn đến độ).
d) Gọi M là trung điểm của BH, N là trung điểm của CH. Tính SDENM.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Xét ΔABH vuông tại H có HD ⊥ AB
Suy ra AH2 = AD . AB (hệ thức lượng trong tam giác vuông)
Xét ΔAEH vuông tại H có HE ⊥ AC
Suy ra AH2 = AE . AC (hệ thức lượng trong tam giác vuông)
Mà AH2 = AD . AB (chứng minh trên)
Suy ra AD . AB = AE . AC
b) Vì ΔABC vuông tại A nên AB2 + AC2 = BC2 (định lý Pytago)
Xét ΔABC vuông tại A có AH ⊥ BC
Suy ra AB2 = BH . BC (hệ thức lượng trong tam giác vuông)
⇔ AB2 . BC = BH . BC2
\( \Leftrightarrow \frac{{BH}}{{BC}} = \frac{{A{B^2}}}{{B{C^2}}}\)
\( \Leftrightarrow \frac{{BH}}{{BC - BH}} = \frac{{A{B^2}}}{{B{C^2} - A{B^2}}}\)
\( \Leftrightarrow \frac{{BH}}{{HC}} = \frac{{A{B^2}}}{{A{C^2}}} = {\left( {\frac{{AB}}{{AC}}} \right)^2}\)
c) Xét ΔABC vuông tại A có AH ⊥ BC
Suy ra AH2 = BH . HC (hệ thức lượng trong tam giác vuông)
Hay AH2 = 4 . 9 = 36
Suy ra AH = 6
Xét tứ giác ADHE có \(\widehat {DAE} = \widehat {A{\rm{D}}H} = \widehat {A{\rm{E}}H} = 90^\circ \)
Suy ra ADHE là hình chữ nhật
Mà AH, DE là hai đường chéo
Suy ra DE = AH = 6 (cm)
Vì ΔABH vuông tại H nên HB2 + AH2 = BA2 (định lý Pytago)
Hay 42 + 62 = AB2
Suy ra \(AB = 2\sqrt {13} \)
Xét ΔABH vuông tại H có HD ⊥ AB
Suy ra AH2 = AD . AB (hệ thức lượng trong tam giác vuông)
Hay \({6^2} = A{\rm{D }}.{\rm{ }}2\sqrt {13} \)
Suy ra \(A{\rm{D = }}\frac{{18}}{{\sqrt {13} }}\)
Xét tam giác ADE vuông tại A có
\({\rm{cos}}\widehat {A{\rm{D}}E} = \frac{{A{\rm{D}}}}{{DE}} = \frac{{18}}{{6\sqrt {13} }} = \frac{3}{{\sqrt {13} }}\)
Suy ra \(\widehat {A{\rm{D}}E} \approx 33^\circ \).
d) Vì ra ADHE là hình chữ nhật có AH, DE là hai đường chéo
Suy ra AH cắt DE tại trung điểm O của mỗi đường
Mà AH = DE
Do đó OH = OD
Suy ra tam giác OHD cân tại O
Suy ra \(\widehat {OH{\rm{D}}} = \widehat {O{\rm{D}}H}\)
Xét ΔHBD vuông tại D có DM là đường trung tuyến ứng với cạnh huyền
Suy ra \(DM = MH = \frac{1}{2}BH = \frac{1}{2}.4 = 2\)
Do đó ΔDMH cân tại M
Suy ra \(\widehat {MDH} = \widehat {MH{\rm{D}}}\)
Mà \(\widehat {DHA} + \widehat {MH{\rm{D}}} = \widehat {AHB} = 90^\circ \) và \(\widehat {AH{\rm{D}}} = \widehat {{\rm{ED}}H}\)(chứng minh trên)
Suy ra \(\widehat {H{\rm{D}}E} + \widehat {M{\rm{DH}}} = \widehat {M{\rm{D}}E} = 90^\circ \)
Hay MD ⊥ DE.
Chứng minh tương tự ta có \(EN = \frac{{CH}}{2} = \frac{9}{2} = 4,5\)
và \(\widehat {DEH} + \widehat {HEN} = \widehat {AHE} + \widehat {{\rm{EHN}}} = \widehat {AHC} = 90^\circ \)
Hay \(\widehat {DEN} = 90^\circ \)
Suy ra EN ⊥ DE
Mà MD ⊥ DE
Nên EN // MD (quan hệ từ vuông góc đến song song)
Xét tứ giác DENM có EN ⊥ DE, EN // MD (chứng minh trên)
Suy ra DENM là hình thang vuông
Do đó \({S_{DENM}} = \frac{{\left( {DM + EN} \right).DE}}{2} = \frac{{\left( {2 + 4,5} \right).6}}{2} = 19,5\,\,\left( {c{m^2}} \right)\) .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD. Hai đầu M, N lần lượt là trung điểm của BC và AD. Tìm các tổng:
a) \(\overrightarrow {NC} + \overrightarrow {MC} ,\overrightarrow {AM} + \overrightarrow {C{\rm{D}}} ,\overrightarrow {A{\rm{D}}} + \overrightarrow {NC} \).
b) \(\overrightarrow {AM} + \overrightarrow {AN} = \overrightarrow {AB} + \overrightarrow {{\rm{AD}}} \).
Câu 2:
Cho đường tròn (O; R), đường kính AB. Vẽ dây AC sao cho \(\widehat {CAB} = 30^\circ \). Trên tia đối của tia BA, lấy điểm M sao cho BM = R. Chứng minh:
a) MC là tiếp tuyến của đường tròn (O).
b) MC2 = 3R2.
Câu 3:
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại 2 điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.
a) Chứng minh OH . OM không đổi.
b) Chứng minh bốn điểm M, A, I, O cùng thuộc 1 đường tròn.
c) Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).
Câu 4:
Cho tam giác ABC cân tại A có các đường cao AH và BK cắt nhau tại I. Chứng minh:
a) Đường tròn đường kính AI đi qua K.
b) HK là tiếp tuyến của đường tròn đường kính AI.
Câu 5:
Câu 6:
Cho tam giác ABC có hai đường cao BD và CE cắt nhau tại H.
a) Chứng minh rằng bốn điểm A; D; H; E cùng nằm trên một đường tròn (gọi tâm của nó là O).
b) Gọi M là trung điểm của BC. Chứng minh ME là tiếp tuyến đường tròn (O).
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức cơ bản, nâng cao có lời giải (P1)
về câu hỏi!