Câu hỏi:
15/05/2023 186
Tìm x ∈ ℚ để biểu thức \(\left| {x + 5} \right| + \left| {x - 7} \right|\) đạt giá trị nhỏ nhất.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
+ Nếu x < 5, ta có: \(\left| {x - 5} \right| + \left| {x - 7} \right| = - x + 5 - x + 7 = - 2x + 12\)
Vì x < 5 ⟺ –2x > –10 nên –2x + 12 > 2.
Ta có: \(\left| {x - 5} \right| + \left| {x - 7} \right| > 2\)
+ Nếu 5 ≤ x ≤ 7, ta có: \(\left| {x - 5} \right| + \left| {x - 7} \right| = x - 5 - x + 7 = 2\)
+ Nếu x > 7, ta có: \(\left| {x - 5} \right| + \left| {x - 7} \right| = x - 5 + x - 7 = 2x - 12\)
Vì x > 7 ⟺ 2x > 14 nên 2x – 12 > 2
Do đó \(\left| {x - 5} \right| + \left| {x - 7} \right| \ge 2\) với mọi x.
Như vậy, giá trị nhỏ nhất của |x – 5| + |x – 7| bằng 2 khi 5 ≤ x ≤ 7.
Vậy tập hợp các giá trị x cần tìm là X = {5 ≤ x ≤ 7| x ∈ ℚ}.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a. Thể tích hồ bơi là: V = 12.5.3 = 180 (m3).
b. Diện tích cần lát gạch xung quanh là: \(S = {S_{xq}} + {S_{day}} = 2.3.\left( {12 + 5} \right) + 12.5 = 162\left( {{m^2}} \right)\)
c. Đổi 50cm = 0,5m
Diện tích 1 viên gạch là: 0,5.0,5 = 0,25 (m2).
Cần mua ít nhất số viên gạch để lát bên trong hồ bơi là: 162 : 0,25 = 648 (viên).
Lời giải
Lời giải:
Nhận thấy M, N là 2 đoạn cùng có độ dài bằng 6, nên để \(M \cup N\)là một đoạn có độ dài bằng 10 thì ta có các trường hợp sau:
+) 2m – 1 ≤ m + 1 ≤ 2m + 5 ⟺ m ∈ \(\left[ { - 4;2} \right]\left( 1 \right)\)
Khi đó: \(M \cup N = \left[ {2m - 1;m + 7} \right]\) nên \(M \cup N\)là 1 đoạn có độ dài bằng 10 khi:
\(\left( {m + 7} \right) - \left( {2m - 1} \right) = 10 \Leftrightarrow m = - 2\left( {TM\left( 1 \right)} \right)\)
+) 2m – 1 ≤ m + 7 ≤ 2m + 5 ⟺ m \( \in \left[ {2;8} \right]\left( 2 \right)\)
Khi đó: \(M \cup N = \left[ {m + 1;2m + 5} \right]\) nên \(M \cup N\) là 1 đoạn có độ dài bằng 10 khi:
\(\left( {2m + 5} \right) - \left( {m + 1} \right) = 10 \Leftrightarrow m = 6\left( {TM\left( 2 \right)} \right)\)
Vậy tổng tất cả các giá trị của m để hợp của 2 tập hợp M và N là 1 đoạn có độ dài bằng 10 là –2 + 6 = 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.