Câu hỏi:
15/05/2023 465Cho nửa đường tròn tâm O đường kính AB. Ax là tia tiếp tuyến của nửa đường tròn (Ax và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB), từ điểm C trên nửa đường tròn (C ≠ A, B) vẽ tiếp tuyến CM cắt Ax tại M, hạ CH vuông góc với AB tại H, MB cắt (O) tại Q và cắt CH tại N.
a) Chứng minh MA2 = MQ.MB.
b) MO cắt AC tại I. Chứng minh tứ giác AIQM nội tiếp.
c) Chứng minh: IN ⊥ CH.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
a) ∆AQB nội tiếp đường tròn (O)
\( \Rightarrow \widehat {AQB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).
⇒ AQ ⊥ QB hay AQ ⊥ BM.
∆ABM vuông tại A (do Ax là tiếp tuyến của (O) nên Ax ⊥ AB) có AQ ⊥ BM, ta áp dụng hệ thức lượng trong tam giác vuông suy ra: MA2 = MQ . MB (đpcm).
b) ∆ACB nội tiếp đường tròn (O)
\( \Rightarrow \widehat {ACB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).
⇒ AC ⊥ CB. (1)
Ta có: OA = OC (Bán kính của đường tròn tâm O)
Và MA = MC (Hai tiếp tuyến MA, MC cắt nhau tại M)
Suy ra MO là đường trung trực của đoạn thẳng AC.
⇒ MO ⊥ AC. (2)
Từ (1) và (2) suy ra BC // OM (cùng vuông góc với AC).
\( \Rightarrow \widehat {OMB} = \widehat {MBC}\) (so le trong).
Hay \(\widehat {IMQ} = \widehat {MBC}\). (3)
Mặt khác: \(\widehat {QAI} = \widehat {MBC}\) (Hai góc nội tiếp đường tròn (O) cùng chắn cung QC). (4)
Từ (3) và (4), suy ra \(\widehat {IMQ} = \widehat {QAI}\).
Do M và A cùng nhìn QI cố định dưới hai góc bằng nhau nên tứ giác AIQM nội tiếp.
c) Do tứ giác AIQM nội tiếp nên suy ra:
\(\widehat {AMI} = \widehat {AQI}\) (Hai góc nội tiếp đường tròn cùng chắn cung AI) (5)
Ta có: \(\widehat {IQN} = \widehat {AQB} - \widehat {AQI} = 90^\circ - \widehat {AQI}\) (6).
Xét tam giác AIM vuông tại I có \(\widehat {AMI} + \widehat {MAI} = 90^\circ \).
Và \(\widehat {MAI} + \widehat {IAO} = \widehat {MAO} = 90^\circ \).
Suy ra \(\widehat {AMI} = \widehat {IAO}\) (Hai góc cùng phụ với \(\widehat {MAI}\)) (7)
Xét tam giác CAH vuông tại H có:
\(\widehat {CAH} + \widehat {ACH} = 90^\circ \Rightarrow \widehat {ACH} = 90^\circ - \widehat {CAH}\)
Hay \(\widehat {ICN} = 90^\circ - \widehat {IAO}\) (8).
Từ (5), (6), (7) và (8), suy ra \(\widehat {IQN} = \widehat {ICN}\).
Do Q và C cùng nhìn IN cố định dưới hai góc bằng nhau nên tứ giác IQCN nội tiếp.
\( \Rightarrow \widehat {CIN} = \widehat {CQN}\) (Hai góc nội tiếp đường tròn cùng chắn cung CN) (*)
Mà \(\widehat {CAB} = \widehat {CQB}\) (Hai góc nội tiếp đường tròn (O) cùng chắn cung CB) (**)
Từ (*) và (**) suy ra \(\widehat {CIN} = \widehat {CAH}\).
Suy ra IN // AH (Có hai góc ở vị trí đồng vị bằng nhau)
Mà AH ⊥ CH nên suy ra IN ⊥ CH.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một hồ bơi dạng hình hộp chữ nhật có kích thước trong lòng hồ là: Chiều dài 12m, chiều rộng 5m, chiều sâu 3m.
a. Tính thể tích của hồ bơi.
b. Tính diện tích cần lát gạch bên trong lòng hồ (mặt đáy và 4 mặt xung quanh).
c. Biết gạch hình vuông dùng để lát hồ bơi có cạnh 50cm. Hỏi cần mua ít nhất bao nhiêu viên gạch để lát bên trong hồ bơi.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Cho hình tròn tâm O, đường kính AB = 8 cm.
a. Tính chu vi hình tròn tâm O đường kính AB, hình tròn tâm M, đường kính AO và hình tròn tâm N, đường kính OB.
b. So sánh tổng chu vi của hình tròn tâm M và hình tròn tâm N với chu vi hình tròn tâm O.
c. Tính diện tích phần đã tô đậm của hình tròn tâm O.
Câu 6:
Cho 3 số dương x, y, z thỏa mãn điều kiện: xy + yz +zx = 1. Tính:
\(A = x\sqrt {\frac{{\left( {{y^2} + 1} \right)\left( {{z^2} + 1} \right)}}{{{x^2} + 1}}} + y\sqrt {\frac{{\left( {1 + {z^2}} \right)\left( {1 + {x^2}} \right)}}{{1 + {y^2}}}} + z\sqrt {\frac{{\left( {1 + {x^2}} \right)\left( {1 + {y^2}} \right)}}{{1 + {z^2}}}} \).
Câu 7:
Cho ∆ABC vuông tại A, đường cao AH. Gọi HD, HE lần lượt là đường cao của ∆AHB và ∆AHC. Chứng minh rằng:
a) \(\frac{{A{B^2}}}{{A{C^2}}} = \frac{{HB}}{{HC}}\).
b) \(\frac{{A{B^3}}}{{A{C^3}}} = \frac{{BD}}{{EC}}\).
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!