Câu hỏi:
16/05/2023 303
Giải hệ phương trình:
\(\left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} = 1\\{x^2} + {y^2} - 2xy + 2yz - 2zx + 1 = 0\end{array} \right.\)
Giải hệ phương trình:
\(\left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} = 1\\{x^2} + {y^2} - 2xy + 2yz - 2zx + 1 = 0\end{array} \right.\)
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Ta có: \({x^2} + {y^2} - 2xy + 2yz - 2zx + 1 = 0\)
\( \Rightarrow {x^2} + {y^2} - 2xy + 2yz - 2zx + \left( {{x^2} + {y^2} + {z^2}} \right) = 0\)
\( \Leftrightarrow \left( {{x^2} - 2xy + {y^2}} \right) - 2z\left( {x - y} \right) + {z^2} + {x^2} + {y^2} = 0\)
\( \Leftrightarrow {\left( {x - y} \right)^2} - 2z\left( {x - y} \right) + {z^2} + {x^2} + {y^2} = 0\)
\( \Leftrightarrow {\left( {x - y - z} \right)^2} + {x^2} + {y^2} = 0\)
Mà \({\left( {x - y - z} \right)^2} \ge 0;\;{x^2} \ge 0;\;{y^2} \ge 0\) nên suy ra:
\(\left\{ \begin{array}{l}x - y - z = 0\\x = 0\\y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}z = x - y\\x = 0\\y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}z = 0\\x = 0\\y = 0\end{array} \right.\)
Vậy (x; y; z) = (0; 0; 0) là nghiệm của hệ phương trình.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có 5n + 14 ⋮ n + 2
5n + 10 + 4 ⋮ n + 2
5(n + 2) + 4 ⋮ n + 2
Vì 5(n + 2) ⋮ n + 2 nên để 5(n + 2) + 4 ⋮ n + 2 thì suy ra:
4 ⋮ n + 2 Þ n + 2 Î Ư(4) = {1; 2; 4; −1; −2; −4}
Þ n Î {−1; 0; 2; −3; −4; −6}
Vậy các số tự nhiên n thỏa mãn là n Î {0; 2}.
Lời giải
Đặt \(S = \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}} + \frac{1}{{729}}\)
\(3S = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}}\)
\(3S - S = 1 - \frac{1}{{729}}\)
\(2S = \frac{{728}}{{729}}\)
\(S = \frac{{728}}{{729}}:2\)
Vậy \(S = \frac{{364}}{{729}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.