Câu hỏi:

16/05/2023 303

Giải hệ phương trình:

\(\left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} = 1\\{x^2} + {y^2} - 2xy + 2yz - 2zx + 1 = 0\end{array} \right.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \({x^2} + {y^2} - 2xy + 2yz - 2zx + 1 = 0\)

\( \Rightarrow {x^2} + {y^2} - 2xy + 2yz - 2zx + \left( {{x^2} + {y^2} + {z^2}} \right) = 0\)

\( \Leftrightarrow \left( {{x^2} - 2xy + {y^2}} \right) - 2z\left( {x - y} \right) + {z^2} + {x^2} + {y^2} = 0\)

\( \Leftrightarrow {\left( {x - y} \right)^2} - 2z\left( {x - y} \right) + {z^2} + {x^2} + {y^2} = 0\)

\( \Leftrightarrow {\left( {x - y - z} \right)^2} + {x^2} + {y^2} = 0\)

\({\left( {x - y - z} \right)^2} \ge 0;\;{x^2} \ge 0;\;{y^2} \ge 0\) nên suy ra:

\(\left\{ \begin{array}{l}x - y - z = 0\\x = 0\\y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}z = x - y\\x = 0\\y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}z = 0\\x = 0\\y = 0\end{array} \right.\)

Vậy (x; y; z) = (0; 0; 0) là nghiệm của hệ phương trình.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có 5n + 14  n + 2

5n + 10 + 4  n + 2

5(n + 2) + 4  n + 2

Vì 5(n + 2)  n + 2 nên để 5(n + 2) + 4  n + 2 thì suy ra:

n + 2 Þ n + 2 Î Ư(4) = {1; 2; 4; −1; −2; −4}

Þ n Î {−1; 0; 2; −3; −4; −6}

Vậy các số tự nhiên n thỏa mãn là n Î {0; 2}.

Lời giải

Đặt \(S = \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}} + \frac{1}{{729}}\)

\(3S = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}}\)

\(3S - S = 1 - \frac{1}{{729}}\)

\(2S = \frac{{728}}{{729}}\)

\(S = \frac{{728}}{{729}}:2\)

Vậy \(S = \frac{{364}}{{729}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP