Câu hỏi:
16/05/2023 1,864
Tìm một số tự nhiên có 2 chữ số, biết rằng nếu thêm chữ số 7 vào bên trái số đó ta được một số lớn gấp 15 lần số đã cho.
Tìm một số tự nhiên có 2 chữ số, biết rằng nếu thêm chữ số 7 vào bên trái số đó ta được một số lớn gấp 15 lần số đã cho.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Gọi số tự nhiên cần tìm là: \(\overline {ab} \).
Nếu viết thêm số 7 vào bên trái số đó thì số đó trở thành: \(\overline {7ab} \).
Theo bài ra, ta có: \(\overline {7ab} = 15 \times \overline {ab} \)
Hay \(700 + \overline {ab} = 15 \times \overline {ab} \)
\(15 \times \overline {ab} - \overline {ab} = 700\)
\(14 \times \overline {ab} = 700\)
\(\overline {ab} = 700:14\)
Do đó \(\overline {ab} = 50\)
Vậy số có hai chữ số cần tìm là 50.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có 5n + 14 ⋮ n + 2
5n + 10 + 4 ⋮ n + 2
5(n + 2) + 4 ⋮ n + 2
Vì 5(n + 2) ⋮ n + 2 nên để 5(n + 2) + 4 ⋮ n + 2 thì suy ra:
4 ⋮ n + 2 Þ n + 2 Î Ư(4) = {1; 2; 4; −1; −2; −4}
Þ n Î {−1; 0; 2; −3; −4; −6}
Vậy các số tự nhiên n thỏa mãn là n Î {0; 2}.
Lời giải
Đặt \(S = \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}} + \frac{1}{{729}}\)
\(3S = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}}\)
\(3S - S = 1 - \frac{1}{{729}}\)
\(2S = \frac{{728}}{{729}}\)
\(S = \frac{{728}}{{729}}:2\)
Vậy \(S = \frac{{364}}{{729}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.