Câu hỏi:

16/05/2023 568 Lưu

Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Qua điểm M thuộc cung nhỏ BC, kẻ tiếp tuyến với đường tròn (O), nó cắt các tiếp tuyến AB và AC theo thứ tự ở D và E. Chứng minh rằng chu vi tam giác ADE bằng 2AB.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường (ảnh 1)

Vì AB, AC là hai tiếp tuyến của (O) lần lượt tại B và C.

Theo tính chất của hai tiếp tuyến cắt nhau ta có: AB = AC

Vì DB, DM là hai tiếp tuyến của (O) lần lượt tại B và M.

Theo tính chất của hai tiếp tuyến cắt nhau ta có: DB = DM

Vì EM, EC là hai tiếp tuyến của (O) lần lượt tại M và C.

Theo tính chất của hai tiếp tuyến cắt nhau ta có: EM = EC

Chu vi tam giác ADE là:

AD + DE + EA

= AD + (DM + ME) + EA

= (AD + DM) + (ME + EA)

= (AD + DB) + (EC + EA) (do DB = DM, EM = EC)

= AB + AC = 2AB (do AB = AC).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có 5n + 14  n + 2

5n + 10 + 4  n + 2

5(n + 2) + 4  n + 2

Vì 5(n + 2)  n + 2 nên để 5(n + 2) + 4  n + 2 thì suy ra:

n + 2 Þ n + 2 Î Ư(4) = {1; 2; 4; −1; −2; −4}

Þ n Î {−1; 0; 2; −3; −4; −6}

Vậy các số tự nhiên n thỏa mãn là n Î {0; 2}.

Lời giải

Đặt \(S = \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}} + \frac{1}{{729}}\)

\(3S = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}}\)

\(3S - S = 1 - \frac{1}{{729}}\)

\(2S = \frac{{728}}{{729}}\)

\(S = \frac{{728}}{{729}}:2\)

Vậy \(S = \frac{{364}}{{729}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP