Câu hỏi:

16/05/2023 501 Lưu

Chứng minh rằng nếu a3 + b3 + c3 = 3abc thì a + b + c = 0 hoặc a = b = c.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\({\left( {a + b + c} \right)^3}\)

\( = {a^3} + {b^3} + {c^3} + 3{a^2}b + 3a{b^2} + 3{b^2}c + 2b{c^2} + 3{c^2}a + 3c{a^2} + 6abc\)

\( = {a^3} + {b^3} + {c^3} + \left( {3{a^2}b + 3a{b^2} + 3abc} \right) + \left( {3{b^2}c + 2b{c^2} + 3abc} \right) + \left( {3{c^2}a + 3c{a^2} + 3abc} \right) - 3abc\)

\( = {a^3} + {b^3} + {c^3} + 3ab\left( {a + b + c} \right) + 3bc\left( {a + b + c} \right) + 3ca\left( {a + b + c} \right) - 3abc\)

Với a3 + b3 + c3 = 3abc nên suy ra:

\[{\left( {a + b + c} \right)^3} = 3ab\left( {a + b + c} \right) + 3bc\left( {a + b + c} \right) + 3ca\left( {a + b + c} \right)\]

\[ \Leftrightarrow \left[ \begin{array}{l}a + b + c = 0\\{\left( {a + b + c} \right)^2} = 3ab + 3bc + 3ca\end{array} \right.\]

\[ \Leftrightarrow \left[ \begin{array}{l}a + b + c = 0\\{a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca\end{array} \right.\]

\[ \Leftrightarrow \left[ \begin{array}{l}a + b + c = 0\\{a^2} + {b^2} + {c^2} - ab - bc - ca = 0\end{array} \right.\]

\[ \Leftrightarrow \left[ \begin{array}{l}a + b + c = 0\\\frac{1}{2}\left[ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right] = 0\end{array} \right.\]

\[ \Leftrightarrow \left[ \begin{array}{l}a + b + c = 0\\a = b = c = 0\end{array} \right.\]

Vậy nếu a3 + b3 + c3 = 3abc thì a + b + c = 0 hoặc a = b = c.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có 5n + 14  n + 2

5n + 10 + 4  n + 2

5(n + 2) + 4  n + 2

Vì 5(n + 2)  n + 2 nên để 5(n + 2) + 4  n + 2 thì suy ra:

n + 2 Þ n + 2 Î Ư(4) = {1; 2; 4; −1; −2; −4}

Þ n Î {−1; 0; 2; −3; −4; −6}

Vậy các số tự nhiên n thỏa mãn là n Î {0; 2}.

Lời giải

Đặt \(S = \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}} + \frac{1}{{729}}\)

\(3S = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}}\)

\(3S - S = 1 - \frac{1}{{729}}\)

\(2S = \frac{{728}}{{729}}\)

\(S = \frac{{728}}{{729}}:2\)

Vậy \(S = \frac{{364}}{{729}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP