Câu hỏi:

16/05/2023 1,648

Chứng minh bất đẳng thức:

\(\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right) \ge \frac{9}{{x + y + z}}\)  (dấu bằng xảy ra khi x = y = z).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét \(\left( {x + y + z} \right)\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)\)

\( = \frac{x}{x} + \frac{x}{y} + \frac{x}{z} + \frac{y}{x} + \frac{y}{y} + \frac{y}{z} + \frac{z}{x} + \frac{z}{y} + \frac{z}{z}\)

\( = 3 + \left( {\frac{x}{y} + \frac{y}{x}} \right) + \left( {\frac{x}{z} + \frac{z}{x}} \right) + \left( {\frac{y}{z} + \frac{z}{y}} \right)\)

\( \ge 3 + 2\sqrt {\frac{x}{y}\,.\,\frac{y}{x}} + 2\sqrt {\frac{x}{z}\,.\,\frac{z}{x}} + 2\sqrt {\frac{x}{y}\,.\,\frac{y}{x}} \) (với x, y, z > 0)

\( = 3 + 2 + 2 + 2 = 9\)

Vậy \(\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right) \ge \frac{9}{{x + y + z}}\)

Dấy “=” xảy ra khi:

\(\left\{ \begin{array}{l}\frac{x}{y} = \frac{y}{x}\\\frac{z}{x} = \frac{x}{z}\\\frac{y}{z} = \frac{z}{y}\end{array} \right. \Rightarrow x = y = z\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tất cả các số tự nhiên n thõa mãn 5n + 14 chia hết cho n + 2.

Xem đáp án » 16/05/2023 13,366

Câu 2:

Tính: \(\frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}} + \frac{1}{{729}}\).

Xem đáp án » 16/05/2023 8,420

Câu 3:

Chứng tỏ rằng: 2x + 3y chia hết cho 17 thì 9x + 5y chia hết cho 17.

Xem đáp án » 16/05/2023 7,044

Câu 4:

Tìm x: 2x + 2x + 3 = 144.

Xem đáp án » 16/05/2023 5,325

Câu 5:

Cho một số tự nhiên có hai chữ số, biết rằng nếu viết thêm số 64 vào bên trái số đó thì được một số gấp 81 lần số đã cho.

Xem đáp án » 16/05/2023 4,816

Câu 6:

Tìm 2 số chẵn có tổng bằng 216, biết giữa chúng có 5 số chẵn.

Xem đáp án » 16/05/2023 3,421

Câu 7:

Cho góc nhọn a, biết sin a = 0,6. Không tính số đo góc a, hãy tính cos a, tan a, cot a.

Xem đáp án » 16/05/2023 3,301
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua