Câu hỏi:

16/05/2023 2,053

Cho \(S = 1 + {3^1} + {3^2} + {3^3} + ... + {3^{30}}\).

Tìm chữ số tận cùng của S. S có phải là số chính phương không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(S = 1 + {3^1} + {3^2} + {3^3} + ... + {3^{30}}\)

\[3S = {3^1} + {3^2} + {3^3} + ... + {3^{31}}\]

\[ \Rightarrow 2S = {3^{31}} - 1\]

\[ \Rightarrow S = \frac{{{3^{31}} - 1}}{2}\]

\({3^{31}} - 1 = {\left( {{3^4}} \right)^7}\,.\,{3^3} - 1 = {\overline {...1} ^4}\;.\;\overline {...7} - 1\)

\( = \overline {...1} \;.\;\overline {...7} - 1 = \overline {...7} - 1 = \overline {...6} \)

Suy ra S có tận cùng là 3 hoặc 8

Mà số chính phương không có tận cùng là 3 hoặc 8 nên S không là số chính phương.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có 5n + 14  n + 2

5n + 10 + 4  n + 2

5(n + 2) + 4  n + 2

Vì 5(n + 2)  n + 2 nên để 5(n + 2) + 4  n + 2 thì suy ra:

n + 2 Þ n + 2 Î Ư(4) = {1; 2; 4; −1; −2; −4}

Þ n Î {−1; 0; 2; −3; −4; −6}

Vậy các số tự nhiên n thỏa mãn là n Î {0; 2}.

Lời giải

Đặt \(S = \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}} + \frac{1}{{729}}\)

\(3S = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{{27}} + \frac{1}{{81}} + \frac{1}{{243}}\)

\(3S - S = 1 - \frac{1}{{729}}\)

\(2S = \frac{{728}}{{729}}\)

\(S = \frac{{728}}{{729}}:2\)

Vậy \(S = \frac{{364}}{{729}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP