Câu hỏi:
13/07/2024 9,091Cho tam giác ABC nhọn (AB > AC), có \(\widehat B = 45^\circ \) và vẽ đường cao AH. Gọi M là trung điểm của AB. P là điểm đối xứng với H qua M.
a) Chứng minh rằng tứ giác AHBP là hình vuông.
b) Vẽ đường cao BK của tam giác ABC. Chứng minh rằng HP = 2MK.
c) Gọi D là giao điểm của AH và BK. Qua D và C vẽ các đường thẳng song song với BC và AH sao cho chúng cắt nhau tại Q. Chứng minh: ba điểm P, K, Q thẳng hàng.
d) Chứng minh các đường thẳng CD, AB và PQ đồng quy.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Bắt đầu thiQuảng cáo
Trả lời:
Lời giải
a) Ta có P là điểm đối xứng với H qua M (giả thiết).
Suy ra M là trung điểm của PH.
Mà M cũng là trung điểm của AB (giả thiết).
Do đó tứ giác AHBP là hình bình hành (1)
∆ABH có: AH ⊥ BH và \(\widehat {ABH} = 45^\circ \).
Suy ra ∆ABH vuông cân tại H.
Do đó AH = BH và \(\widehat {AHB} = 90^\circ \) (2)
Từ (1), (2), ta được tứ giác AHBP là hình vuông.
b) ∆ABK vuông tại K có KM là đường trung tuyến.
Suy ra \(MK = \frac{1}{2}AB\).
Mà AB = HP (do AHBP là hình vuông).
Do đó \(MK = \frac{1}{2}HP\).
Vậy HP = 2MK.
c) Ta có DQ // BC (giả thiết) và DH ⊥ BC (do AH là đường cao của ∆ABC).
Suy ra DQ ⊥ DH hay \(\widehat {HDQ} = 90^\circ \) (3)
Chứng minh tương tự, ta được \(\widehat {HCQ} = 90^\circ \) (4)
Mà \(\widehat {DHC} = 90^\circ \) (do AH là đường cao của ∆ABC) (5)
Từ (3), (4), (5), ta được tứ giác DHCQ là hình chữ nhật.
Gọi F là giao điểm của CD và HQ.
Suy ra F là trung điểm của CD và HQ.
Do đó FD = FC = FQ = FH.
Ta có ∆DKC vuông tại K. Suy ra KF = FD = FC = FQ = FH.
Khi đó ∆HKQ vuông tại K.
Vì vậy HK ⊥ KQ.
Chứng minh tương tự, ta được HK ⊥ PK.
Ta có \(\widehat {PKH} + \widehat {HKQ} = 90^\circ + 90^\circ = 180^\circ \).
Vậy ba điểm P, K, Q thẳng hàng.
d) Gọi E là giao điểm của CD và AB.
∆ABC có BK, AH là hai đường cao cắt nhau tại D.
Suy ra D là trực tâm của ∆ABC.
Khi đó CD ⊥ AB tại E.
∆BCE có \(\widehat {BCE} = 180^\circ - \widehat {BEC} - \widehat {EBC} = 180^\circ - 90^\circ - 45^\circ = 45^\circ \).
Suy ra \(\widehat {DCQ} = \widehat {HCQ} - \widehat {HCD} = 90^\circ - 45^\circ = 45^\circ \).
Khi đó CD là tia phân giác của \(\widehat {HCQ}\).
Mà tứ giác HCQD là hình chữ nhật (chứng minh trên).
Vì vậy HCQD là hình vuông.
Tứ giác MHFE có \(\widehat {HFD} = 90^\circ \) (HCQD là hình vuông); \(\widehat {MEF} = 90^\circ \) (FE ⊥ AB) và \(\widehat {EMH} = 90^\circ \) (AHBP là hình vuông).
Suy ra tứ giác MHFE là hình chữ nhật.
Khi đó \(EF = MH = \frac{1}{2}HP\) và EF // MH.
∆PHQ, có: EF // PH và F là trung điểm của HQ.
Suy ra EF đi qua trung điểm của cạnh PQ.
Mà \(EF = MH = \frac{1}{2}HP\) (chứng minh trên).
Suy ra E là trung điểm của PQ.
Khi đó ba điểm P, E, Q thẳng hàng.
Vậy các đường thẳng CD, AB và PQ đồng quy tại E.Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì (M khác A), kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC ⊥ MB, BD ⊥ MA. Gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB.
1) Chứng minh tứ giác AMBO nội tiếp.
2) Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn.
3) Chứng minh OI.OM = R2; OI.IM = IA2.
4) Chứng minh OAHB là hình thoi.
5) Chứng minh ba điểm O, H, M thẳng hàng.
6) Tìm quỹ tích của điểm H khi M di chuyển trên đường thẳng d.
Câu 2:
Cho tam giác ABC cân tại A, AM là đường cao. Gọi N là trung điểm AC, D là điểm đối xứng của M qua N.
a) Tứ giác ADCM là hình gì? Vì sao?
b) Chứng minh tứ giác ABMD là hình bình hành và BD đi qua trung điểm O của AM.
c) BD cắt AC tại I. Chứng minh \(DI = \frac{2}{3}OB\).
d) E là hình chiếu của N trên BC. Tam giác ABC cân ban đầu cần thêm điều kiện gì để tứ giác ONEM là hình vuông?
Câu 3:
Câu 4:
Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H, K. Một tiếp tuyến với đường tròn (O) cắt các cạnh AB, AC ở M, N.
a) Cho \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).
b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.
c) Cho BC = 2a. Tính tích BM.CN.
d) Tiếp tuyến MN ở vị trí nào thì tổng BM + CN nhỏ nhất?
Câu 5:
Cho nửa đường tròn (O; R) có đường kính AB. Kẻ hai tiếp tuyến Ax và By nằm cùng phía với nửa đường tròn. M là điểm bất kì trên nửa đường tròn (M khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax và By lần lượt tại E và N.
a) Chứng minh AOME và BOMN là các tứ giác nội tiếp.
b) Chứng minh AE.BN = R2.
c) Kẻ MH vuông góc By. Đường thẳng MH cắt OE tại K. Chứng minh AK ⊥ MN.
d) Giả sử \[\widehat {MAB} = \alpha \] và MB < MA. Tính diện tích phần tứ giác BOMH ở bên ngoài nửa đường tròn (O) theo R và α.
e) Xác định vị trí của điểm M trên nửa đường tròn (O) để K nằm trên đường tròn (O).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận
Anh Khoi Pham
22:52 - 16/02/2024
Ê hbh có 1 góc vuông là hcn chứ