Câu hỏi:
13/07/2024 7,668Cho tam giác ABC cân tại A, O là trung điểm của BC. Vẽ đường tròn tâm O tiếp xúc với AB, AC tại H, K. Một tiếp tuyến với đường tròn (O) cắt các cạnh AB, AC ở M, N.
a) Cho \(\widehat B = \widehat C = \alpha \). Tính \(\widehat {MON}\).
b) Chứng minh rằng OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng.
c) Cho BC = 2a. Tính tích BM.CN.
d) Tiếp tuyến MN ở vị trí nào thì tổng BM + CN nhỏ nhất?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Đường tròn (O) có hai tiếp tuyến HM và ME cắt nhau tại M.
Suy ra OM là tia phân giác của \(\widehat {HME}\).
Do đó \(\widehat {HMO} = \widehat {OME} = \frac{1}{2}\widehat {HME} = \beta \).
Chứng minh tương tự, ta được \(\widehat {ONK} = \widehat {ONE} = \frac{1}{2}\widehat {ENK} = \gamma \).
Tứ giác BMNC, có: \(\widehat {CBM} + \widehat {BMN} + \widehat {MNC} + \widehat {NCB} = 360^\circ \).
\( \Leftrightarrow \alpha + 2\beta + 2\gamma + \alpha = 360^\circ \).
\( \Leftrightarrow 2\alpha + 2\beta + 2\gamma = 360^\circ \).
\( \Leftrightarrow \alpha + \beta + \gamma = 180^\circ \) (1)
∆MON, có: \(\widehat {MON} + \beta + \gamma = 180^\circ \) (2)
Từ (1), (2), ta được \(\widehat {MON} = \alpha \).
b) Xét ∆BOM và ∆ONM, có:
\(\widehat {MBO} = \widehat {MON} = \alpha \);
\(\widehat {BMO} = \widehat {OMN} = \beta \).
Do đó (g.g).
Chứng minh tương tự, ta được (g.g).
Vậy OM, ON chia tứ giác BMNC thành ba tam giác đồng dạng là ∆BOM, ∆ONM và ∆CON.
c) Ta có O là trung điểm của BC và BC = 2a.
Suy ra \(BO = CO = \frac{{BC}}{2} = \frac{{2a}}{2} = a\).
Ta có (chứng minh trên).
Suy ra \(\frac{{BM}}{{CO}} = \frac{{BO}}{{CN}}\).
Do đó BM.CN = CO.BO = a.a = a2.
Vậy BM.CN = a2.
d) Áp dụng bất đẳng thức Cauchy, ta được \(BM + CN \ge 2\sqrt {BM.CN} = 2\sqrt {{a^2}} = 2a\).
Ta thấy a là một số không đổi.
Dấu “=” xảy ra ⇔ BM = CN = a.
Vì vậy tổng BM + CN nhỏ nhất khi và chỉ khi BM = CN = a.
Ta có tỉ số \(\frac{{BM}}{{AB}} = \frac{{CN}}{{AC}}\).
Áp dụng định lí Thales đảo, ta được: MN // BC.
Vậy khi tiếp tuyến MN của (O) song song với đường thẳng BC thì tổng BM + CN nhỏ nhất.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì (M khác A), kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC ⊥ MB, BD ⊥ MA. Gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB.
1) Chứng minh tứ giác AMBO nội tiếp.
2) Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn.
3) Chứng minh OI.OM = R2; OI.IM = IA2.
4) Chứng minh OAHB là hình thoi.
5) Chứng minh ba điểm O, H, M thẳng hàng.
6) Tìm quỹ tích của điểm H khi M di chuyển trên đường thẳng d.
Câu 2:
Câu 3:
Cho tam giác ABC nhọn (AB > AC), có \(\widehat B = 45^\circ \) và vẽ đường cao AH. Gọi M là trung điểm của AB. P là điểm đối xứng với H qua M.
a) Chứng minh rằng tứ giác AHBP là hình vuông.
b) Vẽ đường cao BK của tam giác ABC. Chứng minh rằng HP = 2MK.
c) Gọi D là giao điểm của AH và BK. Qua D và C vẽ các đường thẳng song song với BC và AH sao cho chúng cắt nhau tại Q. Chứng minh: ba điểm P, K, Q thẳng hàng.
d) Chứng minh các đường thẳng CD, AB và PQ đồng quy.
Câu 5:
Cho nửa đường tròn (O; R) có đường kính AB. Kẻ hai tiếp tuyến Ax và By nằm cùng phía với nửa đường tròn. M là điểm bất kì trên nửa đường tròn (M khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax và By lần lượt tại E và N.
a) Chứng minh AOME và BOMN là các tứ giác nội tiếp.
b) Chứng minh AE.BN = R2.
c) Kẻ MH vuông góc By. Đường thẳng MH cắt OE tại K. Chứng minh AK ⊥ MN.
d) Giả sử \[\widehat {MAB} = \alpha \] và MB < MA. Tính diện tích phần tứ giác BOMH ở bên ngoài nửa đường tròn (O) theo R và α.
e) Xác định vị trí của điểm M trên nửa đường tròn (O) để K nằm trên đường tròn (O).
về câu hỏi!